当前位置>主页 > 期刊在线 > 电子工程 >

电子工程22年4期

基于自适应 EKF-AHI 的锂电池 SOC 加权估计
张帅帅¹,毕恺韬¹,颜文旭¹,倪宏宇²,储杰²
(1. 江南大学 物联网工程学院,江苏 无锡 214122;2. 国网绍兴供电公司,浙江 绍兴 312000)

摘  要:为了更准确估计锂电池的 SOC,从两方面考虑,即模型选择和估计算法。首先,为了减小由于模型引起的估计误差,采用带有遗忘因子的递推最小二乘法对二阶 RC 等效电路模型参数进行在线辨识,实现锂电池模型参数的自适应。其次,针对 SOC 的估计,提出了基于 EKF 结合 AHI 法实现加权在线估计。实验表明所提方法相比其中单一算法具有更高的估计精度和稳定性,尤其是提高了低 SOC 区间的估计精度,验证了所提算法的有效性。


关键词:SOC 估计;在线参数辨识;EKF;AHI;加权算法



DOI:10.19850/j.cnki.2096-4706.2022.04.013


基金项目:国网浙江省电力有限公司科技项目(B311SX21000A)


中图分类号:TM912                                        文献标识码:A                                        文章编号:2096-4706(2022)04-0048-06


Lithium Battery SOC Weighting Estimation Based on Adaptive EKF-AHI

ZHANG Shuaishuai 1 , BI Kaitao1 , YAN Wenxu1 , NI Hongyu2 , CHU Jie 2

(1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China; 2.State Grid Shaoxing Power Supply Company, Shaoxing 312000, China)

Abstract: In order to estimate the SOC of lithium battery more accurately, this paper considers two aspects: model selection and estimation algorithm. Firstly, in order to reduce the estimation error caused by the model, the recursive least square method with forgetting factor is used to identify online the second-order RC equivalent circuit model parameters, so as to realize the self-adaptive of the lithium battery model parameter. Secondly, for SOC estimation, a weighting online estimation based on EKF and AHI is proposed. Experiments show that the proposed method has higher estimation accuracy and stability than the single algorithm, especially the estimation accuracy of low SOC interval, and verifies the effectiveness of the proposed algorithm.

Keywords: SOC estimation; online parameter identification; EKF; AHI; weighting algorithm


参考文献:

[1] LI Z,HUANG J,LIAW B Y,et al. On state-ofcharge determination for lithium-ion battery [J].Journal of Power Sources,2017,348:281-301.

[2] 彭思敏 . 电池储能系统及其在风—储孤网中的运行与控制[D]. 上海:上海交通大学,2013.

[3] PARTOVIBAKHSH M,LIU G J. An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots [J].IEEE Transactions on Control Systems Technology,2015,23(1):357-363.

[4] 罗志亮 . 锂电池荷电状态自适应估计算法研究 [D]. 哈尔滨:哈尔滨工业大学,2016.

[5] CACCIATO M,NOBILE G,SCARCELLA G,et al. Real-time model-based estimation of SOC and SOH for energy storage systems [C]//2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG).Aachen:IEEE,2015:1-8.

[6] 谈发明,王琪 . 基于改进无迹卡尔曼滤波算法的动力电池SOC 估计模型 [J]. 汽车技术,2019(3):18-24.

[7] 罗勇,赵小帅,祁朋伟,等 . 车用动力电池二阶 RC 建模及参数辨识 [J]. 储能科学与技术,2019,8(4):738-744.

[8] GISMERO A,SCHALTZ E,STROE D I. Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage [J].Energies,2020,13(7):1-11.

[9] 陈德海,华铭,徐王娟,等 . 优化安时积分法实时预测电动自行车电池 SOC [J]. 电池,2019,49(1):41-45.

[10] 王党树,王新霞 . 基于扩展卡尔曼滤波的锂电池 SOC 估算 [J]. 电源技术,2019,43(9):1458-1460.

[11] AUNG H,LOW K S,GOH S T. State-of-Charge Estimation of Lithium-Ion Battery Using Square Root Spherical Unscented Kalman Filter(Sqrt-UKFST)in Nanosatellite [J].IEEE Transactions on Power Electronics,2015,30(9):4774-4783.

[12] 宫明辉,乌江,焦朝勇 . 基于模糊自适应扩展卡尔曼滤波器的锂电池 SOC 估算方法 [J]. 电工技术学报,2020,35(18):3972-3978.

[13] ZHANG L Y,ZHANG L,PAPAVASSILIOU C,et al. Intelligent Computing for Extended Kalman Filtering SOC Algorithm of Lithium-Ion Battery [J].Wireless Personal Communications,2018:2063-2076.

[14] 苏振浩,李晓杰,秦晋,等 . 基于 BP 人工神经网络模型的动力电池 SOC 估算方法 [J]. 储能科学与技术,2019,8(5):868-873.

[15] 田茂飞,安治国,陈星,等 . 基于在线参数辨识和 AEKF 的锂电池 SOC 估计 [J]. 储能科学与技术,2019,8(4):745-750.

[16] CHAO H,YOUN B D,Chung J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation [J].Applied Energy,2012,92(C):694-704.

[17] 李嘉波,魏孟,李忠玉,等 . 基于自适应扩展卡尔曼滤波的锂离子电池荷电状态估计 [J]. 储能科学与技术,2020,9(4):1147-1152.


作者简介:张帅帅(1995—),男,汉族,安徽蚌埠人,硕士研究生在读,研究方向:锂离子电池状态估计;通讯作者:颜文旭(1971—)男,汉族,福建莆田人,博导,教授,博士,研究方向:电力电子技术及智能控制、电力系统及其自动化。