当前位置>主页 > 期刊在线 > 信息技术 >

信息技术23年8期

一种融合逻辑回归的麻雀搜索算法研究
彭一凯12,蒲红平1234
(1. 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000;2. 人工智能四川省重点实验室,四川 宜宾 644000; 3. 成都航空职业技术学院 无人机产业学院,四川 成都 610100;4. 厅市共建智能终端四川省重点实验室,四川 宜宾 644000)

摘  要:为了改善麻雀搜索算法收敛速度缓慢、局部搜索能力较弱等问题,提出了一种融合逻辑回归的麻雀搜索算法。文章通过引入Sine-Sine 混沌、逻辑回归模型、步长因子组合策略来改进麻雀搜索算法的不足之处。实验结果表明该算法具有更好的收敛速度、寻优精度和稳定性的能力。同时,利用该算法预估Taylor 定位算法的初始值,解决了TayLor 的初值难以选择问题,进一步验证了改进策略的有效性。


关键词:麻雀搜索算法;Sine-Sine 混沌;逻辑回归模型;步长因子



DOI:10.19850/j.cnki.2096-4706.2023.08.001


基金项目:人工智能四川省重点实验室(2020RZY01);厅市共建智能终端四川省重点实验室开放课题(SCITLAB-20011)


中图分类号:TP18                     文献标识码:A                      文章编号:2096-4706(2023)08-0001-07


Research on a Sparrow Search Algorithm Incorporating Logistic Regression

PENG Yikai1,2, PU Hongping1,2,3,4

(1.School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China; 2.Sichuan Provincial Key Laboratory of Artificial Intelligence, Yibin 644000, China; 3.School of UAV Industry, Chengdu Aeronautic Polytechnic, Chengdu 610100, China; 4.Intelligent Terminal Key Laboratory of SiChuan Province, Yibin 644000, China)

Abstract: In order to improve the slow convergence speed and weak local search ability of Sparrow Search Algorithm, a Sparrow Search Algorithm incorporating Logic Regression is proposed. This paper improves the shortcomings of the Sparrow Search Algorithm by introducing Sine-Sine chaos, Logical Regression model and step factor combination strategy. The experimental results show that the algorithm has better convergence speed, optimization accuracy and stability. At the same time, the algorithm is used to estimate the initial value of Taylor location algorithm, which solves the problem that it is difficult to select the initial value of TayLor, and further verifies the effectiveness of the improved strategy.

Keywords: Sparrow Search Algorithm; Sine-Sine chaos; Logistic Regression model; step factor


参考文献:

[1] CHEN J F,WANG L,PENG P. A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling [J/OL].Swarm and Evolutionary Computation,2019,50(C):100557[2022-08-09].https://doi.org/10.1016/j.swevo.2019.100557.

[2] LIU W,GONG Y,CHEN W,et al. Coordinated Charging Scheduling of Electric Vehicles:A Mixed-Variable Differential Evolution Approach [J].IEEE Transactions on Intelligent Transportation Systems,2020,21(12):5094-5109.

[3] ZHOU S,XING L,ZHENG X,et al. A Self-Adaptive Differential Evolution Algorithm for Scheduling a Single Batch-Processing Machine With Arbitrary Job Sizes and Release Times [J].IEEE Transactions on Cybernetics,2021,51(3):1430-1442.

[4] XUE Y,ZHANG Q,ZHAO Y. An improved brain storm optimization algorithm with new solution generation strategies for classification [J/OL].Engineering Applications of Artificial Intelligence,2022,110:104677[2022-08-09].https://doi.org/10.1016/j.engappai.2022.104677.

[5] ARORA S,SINGH S. Butterfly optimization algorithm:a novel approach for global optimization [J].Soft Computing,2019,23(3):715-734.

[6] ARORA S,ANAND S. Chaotic grasshopper optimization algorithm for global optimization [J].Neural Computing and Applications,2019,31(8):4385-4405.

[7] XUE J,SHEN B. A novel swarm intelligence optimization approach:sparrow search algorithm [J].Systems Science & Control Engineering,2020,8(1):22-34.

[8] 张九龙,王晓峰,芦磊,等. 若干新型智能优化算法对比分析研究 [J]. 计算机科学与探索,2022,16(1):88-105.

[9] 吕鑫,慕晓冬,张钧,等. 混沌麻雀搜索优化算法 [J]. 北京航空航天大学学报,2021,47(8):1712-1720.

[10] 欧阳城添,朱东林,王丰奇,等. 基于折射麻雀搜索算法的无人机路径规划 [J]. 电光与控制,2022,29(6):25-31.

[11] YAN S,YANG P,ZHU D,et al. Improved Sparrow Search Algorithm Based on Iterative Local Search [J].Computational Intelligence and Neuroscience,2021,2021:1-31.

[12] 朱明豪. 基于1D 离散混沌映射的组合系统研究 [D]. 长沙:湖南大学,2020.

[13] KENNEDY J,EBERHART R C. A discrete binary version of the particle swarm algorithm [C]//1997 IEEE International conference on systems,man,and cybernetics. Computational cybernetics and

simulation. IEEE,1997:4104-4108.

[14] MIRJALILI S,LEWIS A. The whale optimization algorithm [J].Advances in Engineering Software,2016,95:51-67.

[15] MIRJALILI S,MIRJALILI S M,Lewis A. Grey Wolf Optimizer [J].Advances in Engineering Software,2014,69:46-61.

[16] FOY W H. Position-Location Solutions by Taylor-Series Estimation [J].IEEE Transactions on Aerospace and Electronic Systems,1976,AES-12(2):187-194.

[17] CHAN Y T,HO K C. A simple and efficient estimator for hyperbolic location [J].IEEE Transactions on Signal Processing,1994,42(8):1905-1915.


作者简介:彭一凯(1990—),男,苗族,湖南怀化人,硕士研究生在读,主要研究方向:目标识别与跟踪、多点定位;蒲红平(1975—),男,汉族,四川广安人,副教授,博士,主要研究方向:大数据分析、智能控制、智能信号分析与处理、工业自动化研究与工程应用。