当前位置>主页 > 期刊在线 > 电子工程 >

电子工程2018年4期

基于便携式脑电数据的实时疲劳驾驶检测系统
于旭蕾1,李相泽2
(1. 沈阳工学院 信息与控制学院,辽宁 抚顺 113122;2. 东北大学 计算机科学与工程学院,辽宁 沈阳 110819)

摘  要:针对脑电的疲劳驾驶检测技术实用化需要解决的无线化、小巧化及实时性等难题,本文在分析被试处于注意力集中、放松、疲倦和睡眠状态下左前额脑电Attention 和Meditation 数据关系的基础上,提出了基于Attention 和Meditation 相关系数进行疲劳驾驶检测的方法,设计了相应的基于KNN 的疲劳驾驶检测算法,并在安卓智能手持设备上设计实现了系统。实验证明系统疲劳驾驶检测的Sensitivity、Specificity 分别达到68.31% 和90.43%,系统同时具有无线、小巧和实时的特点。


关键词:可穿戴;疲劳驾驶检测;前额叶脑电;KNN



中图分类号:TP274         文献标识码:A         文章编号:2096-4706(2018)04-0037-03


A Real-time Driving Fatigue Detection System Based on Portable EEG
YU Xulei1,LI Xiangze2
(1.School of Information and Control Engineering,Shenyang Institute of Technology,Fushun 113122,China;2.School of Computer Science and Engineering,Northeastern University,Shenyang 110819,China)

Abstract:According to the wireless,compact and real-time problems on the practical application of driving fatigue detection based on EEG,the relation between attentive and meditative EEG from the left prefrontal lobe of the driver who is in concentration,relax,tiresome and sleep states. Meanwhile,a new method for driving fatigue detection based on the correlation coefficient of driver’s Attentiveand Meditative EEG is proposed,and the KNN is introduced to develop a new algorithm for driving fatigue detection. The experiments
show that the Sensitivity and Specificity of the system are 68.31% and 90.43% respectively,and the system has the characteristics ofwireless,compact and real-time.

Keywords:wearable;driving fatigue detection;prefrontal lobe EEG;KNN


参考文献:

[1] 毛喆,初秀民,严新平,等. 汽车驾驶员驾驶疲劳监测技术研究进展 [J]. 中国安全科学学报,2005,15(3):108-112.

[2] 吴雅萱,李文书,施国生,等. 疲劳驾驶检测技术研究综述 [J]. 工业控制计算机,2011,24(8):44-46+49.

[3] 叶柠,孙宇舸. 基于EEG 小波包子带能量比的疲劳驾驶检测方法 [J]. 东北大学学报(自然科学版),2012,33(8):1088-1092.

[4] Qiang Ji,Xiaojie Yang. Real-time eye,gaze,and face posetracking for monitoring driver vigilance [J]. Real-Time Imaging,2002(8):357-377.

[5] 焦昆,李增勇,等. 驾驶精神疲劳的心率变异性和血压变异性综合效应分析 [J]. 生物医学工程学杂志,2005(2):343-346.

[6] 石坚,吴远鹏,卓斌,等. 汽车驾驶员主动安全性因素的辨识与分析 [J]. 上海交通大学学报,2000(4):441-444.

[7] 吕俊,谢胜利,章晋龙. 脑- 机接口中基于ERS/ERD 的自适应空间滤波算法 [J]. 电子与信息学报,2009,31(2):314-318.

[8] Huang Kuan-Chih,Jung Tzyy-Ping,Chuang Chun-Hsiang,et al. Preventing lapse in performance using a drowsiness monitoring andmanagement system. [J]. Conference proceedings:Annual International Conference of the IEEE Engineering in Medicine and Biology Society.IEEE Engineering in Medicine and Biology Society. Conference,2012:3336-9.

[9] 程如中,赵勇,戴勇,等. 基于Adaboost 方法的车载嵌入式疲劳驾驶预警系统 [J]. 北京大学学报(自然科学版),2012,48(5):719-726.

[10] Maarit Kangas,Irene Vikman,Jimmie Wiklander,et al.Sensitivity and specificity of fall detection in people aged 40 years andover [J]. Gait & Posture,2009,29(4):571-574.


作者简介:

于旭蕾(1983.11-),女,汉族,辽宁大连人,教师,讲师,硕士,研究方向:物联网。

李相泽(1981.05-),男,汉族,吉林白城人,讲师,博士研究生,研究方向:机器学习。