摘 要:六维力传感器测量数据时输出信号不可避免地被混合噪声干扰导致降噪性能不佳,同时针对测量噪声 / 系统噪声模型不准确使得卡尔曼滤波辨识误差大的问题,文章采用了基于 Sage-Husa 的自适应卡尔曼滤波算法。将六维力传感器采集的数据分别用卡尔曼滤波器 / 自适应卡尔曼滤波器进行处理,分析了两种算法对传感器测量数据降噪的性能。实验结果表明,基于 Sage-Husa 的自适应卡尔曼滤波器对测量数据曲线的拟合度与平滑性均优于卡尔曼滤波器,其能够更有效地对随机突变噪声进行降噪处理。
关键词:六维力传感器;系统噪声;测量噪声;自适应卡尔曼滤波
DOI:10.19850/j.cnki.2096-4706.2021.23.009
中图分类号:TP241.2 文献标识码:A 文章编号:2096-4706(2021)23-0033-04
A Signal Noise Processing Technology of Six-Axis Force Sensor
XU Mingwei, ZHANG Yu, LI Yanbin
(Shenyang University of Technology, Shenyang 110870, China)
Abstract: When the six-axis force sensor measures data, the output signal is inevitably interfered by mixed noise, resulting in poor noise reduction performance. At the same time, aiming at the problem of large identification error of Kalman Filter due to the inaccurate measurement noise / System Noise model, this paper uses Adaptive Kalman Filter algorithm based on Sage-Husa. The data collected by the six-axis force sensor is processed by Kalman Filter/Adaptive Kalman Filter respectively, and the performance of the two algorithms for noise reduction on sensor measurement data is analyzed. Experimental results show that the Adaptive Kalman Filter based on Sage-Husa has better fitting degree and smoothness to the measured data curve than the Kalman Filter, and it can more effectively reduce the noise of random sudden noise.
Keywords: six-axis force sensor; System Noise; measurement noise; Adaptive Kalman Filter
参考文献:
[1] CHEN F,ZHAO H,LI D W,et al. Contact force control and vibration suppression in robotic polishing with a smart end effector [J].Robotics and Computer-Integrate-d Manufacturing, 2019,57:391 -403.
[2] 张立建,胡瑞卿,易旺民 . 基于六维力传感器的工业机器人末端负载受力感知研究 [J]. 自动化学报,2017,43(3):439-447.
[3] 汪志红 . 电阻应变片式六维力传感器弹性体力学特性的研究 [D]. 芜湖:安徽工程大学,2013.
[4] 宋会杰,董绍武,屈俐俐,等 . 基于 Sage 窗的自适应 Kalman 滤波用于钟差预报研究 [J]. 仪器仪表学报,2017,38(7): 1809-1816.
[5] 邵腾 . 面向参数不精准系统的 Kalman 滤波理论研究 [D]. 杭州:杭州电子科技大学,2016.
[6] 靳松,朱兆林,张旺,等 . 基于 LabVIEW 的中值滤波算法在剔除尖脉冲干扰中的应用 [J]. 机电产品开发与创新,2021,34 (5):22-24.
[7] 黄小平 . 卡尔曼滤波原理及应用 [M]. 北京:电子工业出版社,2015:32-35.
[8] WANG H R,DENG Z H,FENG B,et al.An adaptive Kalman filter estimating process noise covariance [J].Neurocomputing, 2017,233(5):12-17.
[9] 乔尚岭 . 无耦合六维力—力矩传感器数据采集系统研究 [D]. 哈尔滨:哈尔滨工业大学,2014.
[10] 罗家浒,杨会成,曹会彬,等 . 六维力传感器静态条件下的信号噪声处理 [J]. 计算机仿真,2018,35(1):378-381.
作者简介:徐明威(1996.07—),男,汉族,福建漳平人,硕士研究生,研究方向:遥操作机器人和六维力传感器技术。