当前位置>主页 > 期刊在线 > 电子工程 >

电子工程2019年2期

高光谱图像噪声分析与降噪模型概述
李健,吕倩
(辽宁师范大学 数学学院,辽宁 大连 116029)

摘  要:高光谱图像技术是遥感领域中非常重要的技术,数据的收集过程,经常会受到噪声的干扰。降噪是进一步分析高光谱图像的重要步骤,本文对近年来学者们提出的降噪模型进行了简要的概述,介绍了高光谱图像的应用,分析了通常的噪声类型及产生原因,梳理了常用的降噪模型。


关键词:高光谱图像;噪声;降噪模型



中图分类号:TP751         文献标识码:A         文章编号:2096-4706(2019)02-0023-03


Overview of Noise Analysis and Noise Reduction Models for Hyperspectral Images
LI Jian,LYU Qian
(School of Mathematics,Liaoning Normal University,Dalian 116029,China)

Abstract:Hyperspectral image technology is a very important technology in the field of remote sensing. The process of data collection is often disturbed by noise. Noise reduction is an important step for further analysis of hyperspectral images. In this paper,the noise reduction models proposed by scholars in recent years are briefly reviewed. This paper introduces the application of hyperspectral image,analyzes the common noise types and causes,and combs out the common noise reduction models.

Keywords:hyperspectral image;noise;noise reduction model


参考文献:

[1] Acito N,Diani M,Corsini G,et al. Subspace-Based Striping Noise Reduction in Hyperspectral Images [J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1325-1342.

[2] LU X,YUAN Y,WANG Y. Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images [J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):4009-4018.

[3] Zhang H,He W,Zhang L,et al. Hyperspectral ImageRestoration Using Low-Rank Matrix Recovery [J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):4729-4743.

[4] Ye M,Qian Y,Zhou J,et al. Multitask Sparse Nonnegative Matrix Factorization for Joint Spectral–Spatial Hyperspectral Imagery Denoising [J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2621-2639.

[5] Li C,Ma Y,Huang J,et al. Hyperspectral Image Denoising Using the Robust Low-Rank Tensor Recovery [J].Joural of Optical Society of America,2015,32(9):1604-1612.

[6] Qian Y,Ye M. Hyperspectral Imagery Restoration Using Nonlocal Spectral-Spatial Structured Sparse Representation With Noise Estimation [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(2):499-515.


作者简介:

李健(1993.05-),男,汉族,内蒙古赤峰人,硕士在读,研究方向:机器学习;

吕倩(1993.07-),女,汉族,辽宁辽阳人,硕士在读,研究方向:计算机视觉。