信息技术管理2019年6期

基于机器视觉的道路识别技术专利布局与发展趋势
谢晶
(国家知识产权局专利局专利审查协作天津中心,天津 300304)

摘  要:道路识别技术是高级辅助驾驶系统(ADAS)中的关键部分,它能够为司机或者车辆的驾驶决策部分提供必要的道路环境信息。由于道路形态和路面状况的多样性,道路检测的结果易于受到光照、车辆,以及各种复杂的交通状况的影响,道路检测是一个非常复杂的问题,值得我们进行深入的研究。本文将从专利角度系统梳理有关道路识别技术的专利申请,对该领域的专利申请趋势、重要申请人及其研究重点进行总结,以期对该领域的专利审查带来有益的帮助。


关键词:机器视觉;道路识别;专利布局



中图分类号:TP391.41         文献标识码:A         文章编号:2096-4706(2019)06-0174-04


Patent Layout and Development Trend of Road Recognition Technology Based on
Machine Vision
XIE Jing
(Patent Examination Cooperation(Tianjin)Center of the Patent Office,CNIPA,Tianjin 300304,China)

Abstract:Road recognition technology is a key part of Advanced Driving Assistance System (ADAS),which can provide necessary road environment information for driver or vehicle driving decision-making. Because of the diversity of road morphology and road condition,the results of road detection are easily affected by illumination,vehicles and various complex traffic conditions. Road detection is a very complex problem,which deserves our in-depth study. This paper will systematically sort out the patent application of road identification technology from the patent point of view,and summarize the trend of patent application,important applicants and their research emphases in this field,with a view to bringing beneficial help to patent examination in this field.

Keywords:machine vision;road recognition;patent layout


参考文献:

[1] 罗安宁. 基于机器视觉的道路检测算法 [D]. 北京:清华大学,2014.

[2] BERTOZZI M,BROGGI A. GOLD:a parallel real-time stereo vision system for generic obstacle and lane detection [J]. IEEE Transactions on Image Processing,1998,7(1):62-81.

[3] LOOSE H.,FRANKE U.,B-spline-based road model for 3D lane recognition [C].2010 13th International IEEE Conference on Intelligent Transportation Systems,2010.

[4] ALVAREZ J. et al.,Vision-based road detection using road models [C].2009 16th IEEE International Conference on Image Processing,2009.

[5] Changbeom Oh,Bongjoe Kim,Kwanghoon Sohn. Automatic illumination invariant road detection with stereo vision[C]// Industrial Electronics and Applications (ICIEA),2012 7th IEEE Conference on. S.l.:s.n.,2012:889-893.

[6] GUO C Z,Mita,Seiichi. A semantic graph of traffic scenes for intelligent vehicle systems[J]. IEEE Intelligent Systems,2012,27(4):57-62.

[7] Chunzhao Guo,MITA S. Semantic-based road environment recognition in mixed traffic for intelligent vehicles and advanced driver assistance systems[C]// Intelligent Transportation Systems (ITSC),2012 15th International IEEE Conference on. S.l.:s.n.,2012:444-450.

[8] HOIEM D. et al.,Seeing the world behind the image:spatial layout for three-dimensional scene understanding [M]. Carnegie Mellon University,2007.


作者简介:谢晶(1988.11-),女,汉族,河北衡水人,硕士研究生,研究实习员,研究方向:人工智能与模式识别。