当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术2019年5期

基于多种聚类的无监督距离融合学习算法研究
侯守明¹′²,林晓洁¹,胡明凯³
(1. 河南理工大学 计算机科学与技术学院,河南 焦作 454000;2. 鹤壁汽车工程职业学院,河南 鹤壁 458030; 3. 中建深圳装饰有限公司,广东 深圳 518003)

摘  要:本文针对传统的形状匹配算法的处理计算量过大、消耗时间过长,从而导致无法应用于大量的图像集以及在线的形状匹配场景的问题,在学者提出的距离融合算法的基础上进行了改进,在处理阶段引入无监督学习的方法进行多种聚类。通过引入预处理算法对图像集进行特征提取以及划分,在算法的计算量上做出优化,大幅降低了算法的计算时耗,并且保证其正确率几乎没有降低。


关键词:无监督;形状匹配;多重聚类;距离融合



中图分类号:TP391;TP751.1        文献标识码A        文章编号:2096-4706(2019)05-0070-04


Research on Unsupervised Distance Fusion Learning Algorithm Based on Multiple Clusters

HOU Shouming1,2,LIN Xiaojie1,HU Mingkai3

(1.College of Computer Science and Technology,Henan University of Technology,Jiaozuo 454000,China;2.Hebi AutomotiveEngineering Professional College,Hebi 458030,China;3.China Construction Shenzhen Decoration Co.,Ltd.,Shenzhen 518003,China)

Abstract:The problem of traditional shape matching algorithm is too large and the consumption time is too long,which can not be applied to a large number of image sets and online shape matching scenes. It is improved on the basis of the distance fusion algorithm proposed by scholars. Introduce unsupervised learning methods in the processing stage to perform multiple clustering. The feature extraction and division of the image set are introduced by introducing the preprocessing algorithm,and the calculation of the algorithm is optimized, which greatly reduces the computational time consumption of the algorithm and ensures that the correct rate is almost not reduced.

Keywords:unsupervised;shape matching;multiple clustering;distance fusion


参考文献:

[1] 刘丽,匡纲要. 图像纹理特征提取方法综述 [J]. 中国图象图形学报,2009,14(4): 622-635.

[2] Zhao Q,Cao J,Hu Y.Image Retrieval Based on Color-Spatial Distributing Feature [J].Journal of Southern Yangtze University,2007,346:79-86.

[3] Michał Łągiewka,Korytkowski M,Scherer R. Distributed image retrieval with color and keypoint features [C]// IEEE International Conference on Innovations in Intelligent Systems & Applications. IEEE,2017.

[4] Zhu X. Shape Recognition Based on Skeleton and Support Vector Machines [C]// International Conference on Intelligent Computing. Springer,Berlin,Heidelberg,2007.

[5] 张桂梅,蔡报丰. 基于内距离形状上下文特征的形状匹配研究 [J]. 南昌航空大学学报(自然科学版),2016,30(2):1-7.

[6] BAI X,YANG X,LATECKI LJ,et al. Learning contextsensitive shape similarity by graph transduction [J].IEEE transactions on pattern analysis and machine intelligence,2010,32(5):861-74.

[7] BAI X,WANG B,YAO C,et al. Co-transduction for shape retrieval [J].IEEE Transactions on Image Processing,2012,21(5):2747-2757.


作者简介:

侯守明(1972-),男,汉族,河南博爱人,教授,硕士生导师,博士,研究方向:图形图像处理、虚拟现实与增强现实;

通讯作者:

林晓洁(1990-),女,汉族,河南濮阳人,硕士研究生,研究方向:系统软件、图像处理;

胡明凯(1991-),男,汉族,广东深圳人,硕士,研究方向:数字化工程与仿真。