当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术2018年12期

参数拟合的估计方法研究
鲍新雪,陈国能
(贵州建设职业技术学院,贵州 贵阳 551400)

摘  要:对于测绘生产实践中经常遇到的拟合参数的估计问题,本文以线性拟合为例,采用常用的间接平差法、附有参数的条件平差法、整体最小二乘平差法进行解算。主要利用最优估计唯一性原则对三者的解算结果进行对比分析。间接平差法仅考虑部分观测值的随机性质,以不同的量作为自变量和因变量,解算结果不一致;附有参数的条件平差法看似考虑了所有观测值的随机性质,但以不同的量作为自变量和因变量,其解算结果也不一致;整体最小二乘平差法顾及了全部观测值的随机性质,以不同的量作为自变量和因变量,解算结果一致,是当前情况下的最佳估值解法。


关键词:参数拟合;间接平差法;附有参数的条件平差法;整体最小二乘平差法



中图分类号:P207         文献标识码:A         文章编号:2096-4706(2018)12-0071-05


Study on the Estimation Method of Parameter Fitting

BAO Xinxue,CHEN Guoneng

(Guizhou Polytechnic of Construction,Guiyang 551400,China)

Abstract:For the estimation of fitting parameters problem often encountered in surveying and mapping production practice,thispaper takes linear fitting as an example,and uses indirect adjustment method,conditional adjustment method with parameters and totalleast square method to solve the problem. This article summaries some usually used solution methods:the indirect adjustment methodand the conditional adjustment method with parameters and the total least squares method. Then utilizes some instances accomplishedcomparison of these algorithms and give the corresponding suggestions. Results show that:considering the stochastic property of someobservations,using different quantities as independent variables and dependent variables,the indirect adjustment method leads toinconsistent results,the conditional adjustment method with parameters seems to take into account the random nature of all observations,but it also leads to inconsistent results,but the total least squares method takes into account the random nature of all observations ,it leadsto consistent results and it is the best valuation in the current situation.

Keywords:parameter fitting;indirect adjustment method;conditional adjustment method with parameters;total leastsquares method


参考文献:

[1] 邱卫宁,陶本藻,姚宜斌,等. 测量数据处理理论与方法 [M]. 武汉:武汉大学出版社,2008:27-28.

[2] 丁克良,沈云中,欧吉坤. 整体最小二乘法直线拟合 [J].辽宁工程技术大学学报(自然科学版),2010,29(1):44-47.

[3] 王继刚,周立,蒋廷臣,等. 一种简单的加权整体最小二乘直线拟合方法 [J]. 测绘通报,2014(4):33-35.

[4] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础 [M]. 武汉:武汉大学出版社,2009:44-47.

[5] Paul R.Wolf,CharlesD.Ghilani.AdjustmentComputations:Statistics and Least Squares in Surveying and GIS [M].John:Wiley&Sons,Inc 1997:123-125.

[6] 鲁铁定,陶本藻,周世健. 基于整体最小二乘法的线性回归建模和解法 [J]. 武汉大学学报(信息科学版),2008(5):504-507.


作者简介:鲍新雪(1991.11-),女,汉族,河南驻马店人,硕士研究生,教员,研究方向:数据处理。