当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术2019年15期

基于GTM 和多分辨率B 样条的医学图像配准方法
于佳¹,张兴伟²
(1. 洛阳理工学院 计算机与信息工程学院,河南 洛阳 471023;2. 洛阳莱普生信息科技有限公司,河南 洛阳 471003)

摘  要:本文提出了一种基于GTM(Graph Transformation Matching)和多分辨率B 样条的医学图像配准方法。为了得到精确的特征点对,使用GTM 算法去除血管树模型中的冗余点;然后使用多分辨率B 样条函数对图像进行配准。肝脏MRI 上的实验证明,本文提出的非刚性配准方法能够有效提取出特征点,并且达到了较好的配准精度。


关键词:医学图像配准;GTM;多分辨率B 样条



中图分类号:TP391.41         文献标识码:A         文章编号:2096-4706(2019)15-0085-04


Medical Image Registration Method Based on GTM and Multi-resolution B-splines

YU Jia1,ZHANG Xingwei2

(1.School of Computer and Information Engineering,Luoyang Institute of Science and Technology,Luoyang 471023,China;2.Luoyang Laipson Information Technology Co.,Ltd.,Luoyang 471003,China)

Abstract:This paper proposes a Graph Transformation Matching (GTM) and multilevel B-splines based approach for medical image registration. We utilize GTM algorithm to remove outliers to get the accurate pair-wise feature points. Then Multilevel B-Splines algorithm is used to find the non-linear transformation between two images. Experiments on liver MRI show that the proposed non-rigid registration method can effectively extract feature points and achieve better registration accuracy.

Keywords:medical image registration;GTM;multilevel B-splines


基金项目:本文系国家自然科学基金项目:协作式移动群体感知数据选择方法研究(项目编号:61602230);洛阳理工学院校内基金项目:非刚性医学图像配准方法研究(项目编号:21010270)资助。


参考文献:

[1] Can A,Stewart C V,Roysam B,et al. A feature-based,robust,hierarchical algorithm for registering pairs of images of the curved human retina [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):347-364.

[2] 冯林,张名举,贺明峰,等. 用分层互信息和薄板样条实现医学图像弹性自动配准 [J]. 计算机辅助设计与图形学学报,2005(7):1492-1496.

[3] Rohr K,Stiehl S H,Sprengel R,et al. Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines [J].IEEETrans. Med. Imaging,2001,20(6):526-534.

[4] Rueckert D,Sonoda L I,Hayes C,et al. Nonrigid RegistrationUsing Free-Form Deformations:Application to Breast MR Images [J].IEEE Transactions on Medical Imaging,1999,18(8):712-721.

[5] Niu C. Medical Image Registration Based on Mutual Information Using Kriging Probability Density Estimation [J].Conference proceedings:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference,2005,3:3097-3099.

[6] Liu J,Tian J,Dai Y. Multi-modal medical image registration based on adaptive combination of intensity and gradient field mutual information [J].Conference proceedings :Annual International Conference of the IEEE Engineering in Medicine and Biology Society.IEEE Engineering in Medicine and Biology Society. Conference,2006:1429-1432.

[7] Christensen G E,Rabbitt R D,Miller M I. Deformable templates using large deformation kinematics [J].IEEE Transactions on Image Processing,1996,5(10):1435-1447.

[8] Christensen G E,Miller M I,Vannier M W,et al.Individualizing neuro-anatomical atlases using a massively parallel computer [J].Computer,1996,29(1):32-38.

[9] Lester H,Arridge S R,Jansons K M,et al. Non-linear Registration with the Variable Viscosity Fluid Algorithm [A].Proceedings of International Conference on Information Processing in Medical Imaging [C].Berlin:Springer,1999:238-251.

[10] Hellier P,Barillot C. Cooperation between local and global approaches to register brain images [A].Proceedings of International Conference on Information Processing in Medical Imaging [C].Berlin:Springer,2001:315-328.


作者简介:

于佳(1980.10-),男,汉族,河南洛阳人,讲师,博士研究生,研究方向:医学图像处理、自然语言处理、机器学习;

张兴伟(1981.06-),男,汉族,河南洛阳人,研究员,硕士研究生,研究方向:医学图像处理、大数据技术。