当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术21年3期

海鸥优化算法与鲸鱼优化算法的寻优性能对比研究
李沅航
(山东理工大学 计算机科学与技术学院,山东 淄博 255049)

摘  要:近年来随着算法技术的发展,越来越多的新型群智能优化算法被国内外学者提出,并且被应用于解决机器学习、路径选择、过程控制等复杂性的问题上。文章根据两种新型群智能优化算法,即海鸥优化算法和鲸鱼优化算法的不同求解特点,模拟了两种算法的局部搜索和全局搜索过程。并通过 8 个基准测试函数进行仿真实验对比。观察两种算法的求解精度和收敛速度,比较它们的寻优性能,并且分析了二者的异同点和相关的改进方法。


关键词:海鸥优化算法;鲸鱼优化算法;基准测试函数;寻优性能



DOI:10.19850/j.cnki.2096-4706.2021.03.018


中图分类号:TP301.6                                 文献标识码:A                                      文章编号:2096-4706(2021)03-0067-05


Contrastive Study on Optimizing Performance of Seagull Optimization Algorithm and Whale Optimization Algorithm

LI Yuanhang

(School of Computer Science and Technology,Shandong University of Technology,Zibo 255049,China)

Abstract:In recent years,with the development of algorithm technology,more and more new swarm intelligence optimization algorithms have been proposed by scholars at home and abroad,and have been applied to solve complex problems such as machine learning,path selection and process control,etc. Based on two new swarm intelligence optimization algorithms,that is,the different solution characteristics of seagull optimization algorithm and whale optimization algorithm,the local search and global search processes of the two algorithms are simulated. Eight benchmark test functions are used to compare the simulation experiments. The solution accuracy and convergence speed of the two algorithms are observed,their optimization performance are compared,and the similarities and differences of the two algorithms and the related improvement methods are analyzed.

Keywords:seagull optimization algorithm;whale optimization algorithm;benchmark test function;optimization performance


参考文献:

[1] MIRJALILI S,MIRJALILI S M,LEWIS A. Grey Wolf Optimizer [J].Advances in Engineering Software,2014,69:46-61.

[2] MIRJALILI S. Moth-flame optimization algorithm:A novel nature-inspired heuristic paradigm [J].Knowledge-Based Systems, 2015,89:228-249

[3] YANG X S,HE X. Firefly algorithm:recent advances and applications [J].International Journal of Swarm Intelligence,2013,1 (1):36-50.

[4] GANDOMI A H,ALAVI A H. Krill herd:A new bio-inspired optimization algorithm [J].Communications in Nonlinear Science and Numerical Simulation,2012,17(12):4831-4845.

[5] DHIMAN G,KUMAR V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems [J].Knowledge-based Systems,2019,165:169-196.

[6] MIRJALILI S,LEWIS A. The Whale Optimization Algorithm [J].Advances in Engineering Software,2016,95:51-67.

[7] 李雅丽,王淑琴,陈倩茹,等 . 若干新型群智能优化算法 的对比研究 [J]. 计算机工程与应用,2020,56(22):1-12.

[8] 徐向艺 . 两种智能优化算法在交通控制应用中的对比分析 [J]. 电脑与电信,2016(9):67-69.

[9] 杨烨 . 基于二进制海鸥优化算法的特征选择算法研究 [D]. 南昌:江西财经大学,2020.

[10] 王玉银 . 群智能优化算法在图像分割中的应用 [J]. 现代 计算机,2020(30):39-43.

[11] 韩毅,徐梓斌,张亮,等 . 国外新型智能优化算法—— 海鸥优化算法 [J]. 现代营销(经营版),2019(10):70-71.

[12] SUGANTHAN P N,HANSEN N,LIANG J J,et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization [J].Natural Computing,2005 (1):341-357.

[13] 郝晓弘,宋吉祥,周强,等 . 混合策略改进的鲸鱼优化 算法 [J]. 计算机应用研究,2020,37(12):3622-3626+3655.


作者简介:李沅航(1999—),男,汉族,辽宁辽阳人,本科 在读,研究方向:软件工程。