摘 要:研究了一类具有随机长连接强度的时滞小世界网络的特征值分布。首先给出小世界网络的结构和矩阵表示,分析了构成小世界网络的规则环形网络的连接强度矩阵的最大特征值、最小特征值和其他 n-2 个特征值的取值范围,讨论了小世界网络的长连接强度矩阵元素 Xij 的数学期望和方差,进而分析了小世界网络的长连接强度矩阵 X 的特征值分布,最后给出了小世界网络连接强度矩阵 D 的特征值分布。
关键词:小世界网络;随机长连接强度;时滞;特征值分布
DOI:10.19850/j.cnki.2096-4706.2021.05.033
基金项目:吉林省教育厅“十三五”科学技 术项目(JJKH20180636KJ)
中图分类号:O157.5 文献标识码:A 文章编号:2096-4706(2021)05-0135-03
Study on the a Kind of Eigenvalues of Small World Network
ZHOU Jing
(Institute of Information Technology,Jilin Agricultural University,Changchun 130118,China)
Abstract:A kind of eigenvalue distribution of a small world network with time delay with random long connection strength is studied. Firstly,the structure and matrix representation of small world network are given. The maximum eigenvalue,the minimum eigenvalue and the value range of other n-2 eigenvalues of the connection strength matrix of regular ring network of small world network are analyzed. The mathematical expectation and variance of the element Xij of the long connection strength matrix of small world network is discussed,then the eigenvalue distribution of the long connection strength matrix X of small world network is analyzed. Finally,the eigenvalue distribution of the connection strength matrix D of small world network is given.
Keywords:small world network;random long connection strength;time delay;eigenvalue distribution
参考文献:
[1] 王祖力,张艳.脑功能网络核心节点及网络稳定性研究 [J]. 中国计量学院学报,2014,25(4):414-418.
[2] 陆君安,王沛 . 从复杂网络小世界、无标度、高聚类特性 看新型冠状病毒肺炎 [EB/OL].(2020-02-06).https://www. 163.com/dy/article/F4O4UQHB0511D05M.html.
[3] 罗佳伟,徐旭 . 参数与时滞相关延迟振子的稳定性及 Hopf 分岔分析 [J]. 吉林大学学报(理学版),2018,56(6):1337-1344.
[4] 盛夏,张丽,郑虹,等 . 具有时滞的高维网络系统的周期 解 [J]. 吉林大学学报(理学版),2010,48(5):728-732.
[5] YU D Y,XU X,ZHOU J,et al. Stability and instability of a neuron network with excitatory and inhibitory small-world connections [J].Neural Networks,2017,89:50-60.
[6] ZHOU J,XU X,YU D Y,et al. Stability,Instability and Bifurcation Modes of a Delayed Small World Network with Excitatory or Inhibitory Short-Cuts [J/OL].International Journal of Bifurcation and Chaos,2016,26(4):[2021-01-06].https://www.worldscientific. com/doi/abs/10.1142/S021812741650070X.
[7] GRAY R M. Toeplitz and Circulant Matrices:A Review [J]. Foundations and Trends® in Communications and Information Theory, 2006,2(3):155-239.
[8] FÜREDI Z,KOMLÓS J. The eigenvalues of random symmetric matrices [J].Combinatorica,1981(1):233-241.
[9] 孙继广 . 矩阵扰动分析:第 2 版 [M]. 北京:科学出版社, 2001.
作者简介:周晶(1980—),女,汉族,吉林德惠人,讲师, 博士,研究方向:复杂网络的动力学与控制。