当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术22年2期

基于改进 YOLOX 的交通标志检测与识别
陈民,吴观茂
(安徽理工大学 计算机科学与工程学院,安徽 淮南 232001)

摘  要:现实中交通标志的检测和识别具有环境多变的特点,交通标志长时间暴露在外经常会出现损坏情况,对检测的精 度和速度产生较大影响。利用最新的 YOLO 系列算法——YOLOX,对网络结构的加强特征提取层进行改进,引入 OPA-FPN网络,相较于原来的 PANet 网络,后者精度提升 2.2%。在交通标志识别过程,对经典的卷积神经网络模型 LeNet-5 进行改进,在数据集 TT100K 中进行实验,相较于其他交通标志识别模型,使用改进的模型可以使识别正确率提升 2.31%,识别时间减少了 13.02 ms。


关键词:单步路径聚合网络;YOLO;卷积神经网络;FPN;LeNet-5



DOI:10.19850/j.cnki.2096-4706.2022.02.025


基金项目: 安徽省自然科学基金项目(1908085MF189)


中图分类号:TP273+.4                                 文献标识码:A                                   文章编号:2096-4706(2022)02-0101-04


Traffic Sign Detection and Recognition Based on Improved YOLOX

CHEN Min, WU Guanmao

(School of Computer Science and Engineering, Anhui University of Technology, Huainan 232001, China)

Abstract: In reality, the detection and recognition of traffic signs have the characteristics of changeable environment. Traffic signs are often damaged after being exposed for a long time, which has a great impact on the accuracy and speed of detection. Using the latest YOLO series algorithm—YOLOX, the enhanced feature extraction layer of the network structure is improved, and the OPA-FPN network is introduced. Compared with the original PANet network, the accuracy of the latter is improved by 2.2%. In the process of traffic sign recognition, the classical convolutional neural network model LeNet-5 is improved, experiments are carried out in the data set TT100K. Compared with other traffic sign recognition models, using the improved model can improve the recognition accuracy by 2.31% and reduce the recognition time by 13.02 ms.

Keywords: single-step path aggregation network; YOLO; convolutional neural network; FPN; LeNet-5


参考文献:

[1] 陈维馨,李翠华,汪哲慎 . 基于颜色和形状的道路交通标志检测 [J]. 厦门大学学报(自然科学版),2007(5):635-640.

[2] REN S,HE K,GIRSHICK R,et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.

[3] REDMON J,FARHADI A. YOLOv3:An Incremental Improvement [J/OL].arXiv:1804.02767 [cs.CV].(2018-04-08).https://arxiv.org/abs/1804.02767v1.

[4] BOCHKOVSKIY A,WANG C Y,Liao H Y M. YOLOv4:Optimal Speed and Accuracy of Object Detection [J/OL].arXiv:2004.10934 [cs.CV].(2020-04-23).https://arxiv.org/abs/2004.10934.[5] YI Z T,WU G,PAN X L,et al. Research on Helmet

Wearing Detection in Multiple Scenarios Based on YOLOv5 [EB/OL].[2021-11-16].https://mall.cnki.net/magazine/Article/IPFD/KZJC202105007096.htm.

[6] 赵志宏,杨绍普,马增强 . 基于卷积神经网络 LeNet-5 的车牌字符识别研究 [J]. 系统仿真学报,2010(3):638-641.


作者简介:陈民(1997—),女,汉族,安徽濉溪人,硕士在读,研究方向:目标检测;吴观茂(1965—),男,汉族,安徽歙县人,副教授,博士,研究方向:深度学习。