摘 要:在无人机飞行过程中,由于低成本无人机对状态反馈不准确和外部干扰对传感器的影响,导致飞行时间一长会出现漂移现象,使得无人机产生浮动等不良问题。为了解决这些问题,提出一种适用于小型无人机状态估计的四元数扩展卡尔曼滤波数据融合算法,该算法通过建立四元数系统观测模型和传感器量测模型,解决了低成本传感器对无人机位置和姿态直接测量的低精度和易被外界干扰的问题,有效提高了状态估计的精度。仿真实验验证了算法的有效性。
关键词:无人机;四元数;扩展卡尔曼滤波器;状态估计;数据融合
DOI:10.19850/j.cnki.2096-4706.2022.04.031
中图分类号:TP183 文献标识码:A 文章编号:2096-4706(2022)04-0118-05
UAV State Estimation Based on Extended Kalman Filter
WANG Wenli, HE Bo
(Department of Aerospace Science and Technology, Aerospace Engineering University of the PLA Strategic Support Force, Beijing 101416, China)
Abstract: During the flight of the UAV, due to the inaccurate state feedback of the low-cost UAV and the influence of external interference on the sensor, the drift phenomenon will occur over a long flight time, causing the UAV to float and other undesirable problems. In order to solve these problems, a quaternion extended Kalman filter data fusion algorithm suitable for small UAV state estimation is proposed. The algorithm solves the problems of low accuracy and easy interference from the outside world in the direct measurement of the position and attitude of the UAV for the low-cost UAV, by establishing the quaternionic system observation model and the sensor measurement model. It effectively improves the accuracy of the state estimation. The simulation experiments demonstrate the effectiveness of the algorithm.
Keywords: UAV; quaternion; extended Kalman filter; state estimation; data fusion
参考文献:
[1] GREWAL M S,ANDREWS A P. 卡尔曼滤波理论与实践(MATLAB 版):第 4 版 [M]. 北京:电子工业出版社,2017.
[2] BEARD R W,MCLAIN T W.Small Unmanned Aircraft: Theory and Practice [M].Princeton:Princeton University Press, 2012.
[3] 杨兆,沈作军 . 基于扩展卡尔曼滤波的小型固定翼无人机姿态估计方法分析 [J]. 航空科学技术,2017,28(11):15-21.
[4] 金舒灿,胡越黎,张贺 . 基于 EKF 的四旋翼姿态解算仿真与设计 [J]. 电子技术应用,2017,43(9):127-131+136.
[5] 丁磊,吴蔚劼,方挺 . 基于扩展卡尔曼滤波的多旋翼飞行器融合姿态解算算法 [J]. 安徽工业大学学报(自然科学版),2018,35(3):240-248.
[6] 石宇芃,马宏军,陈豹 . 基于四元数的四旋翼无人机扩展卡尔曼滤波算法 [J]. 控制工程,2021,28(11):2131-2135.
[7] HOUGH W J.Autonomous aerobatic flight of a fixed wing unmanned aerial vehicle [J].Stellenbosch University of Stellenbosch, 2007.
作者简介:王文丽(1996.11—),女,汉族,甘肃酒泉人,硕士研究生在读,研究方向:无人机自主飞行控制。