当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术22年7期

基于改进 LBP 的纹理特征提取算法
张云锦
(中国直升机设计研究所,江西 景德镇 333000)

摘  要:LBP 纹理特征提取算法在提取纹理特征时,存在鲁棒性较差、对噪声较敏感等问题。针对前述问题,文章提出一种(ILNRBP)改进的局部抗噪鲁棒性二值模式。对于一个给定的中心像素,首先计算中心像素灰度值与邻域像素点周围的四个邻域像素点灰度均值之间的差值,然后将该差值与阈值 T 之间的差异二值量化得到 ILNRBP 二进制串,最后根据所有像素的ILNRBP 直方图得到该幅图像的特征直方图。


关键词:局部二值模式;纹理特征提取;纹理分类



DOI:10.19850/j.cnki.2096-4706.2022.07.019


中图分类号:TP391                                        文献标识码:A                                  文章编号:2096-4706(2022)07-0077-04


Texture Feature Extraction Algorithm Based on Improved LBP

ZHANG Yunjin

(China Helicopter Research and Development Institute, Jingdezhen 333000, China)

Abstract: LBP texture feature extraction algorithm has the problems of poor robustness and sensitiveness to noise when extracting texture features. Considering the above problems, an Improved Local Noise Robustness Binary Pattern (ILNRBP) is proposed. For a given center pixel, firstly, the difference value between the central pixel gray degree value and the pixel gray degree mean of the four neighborhood pixels around the neighborhood pixels is calculated. Then the difference between the difference value and threshold T is quantized to obtain the ILNRBP binary string. Finally, the characteristic histogram of the image is obtained from ILNRBP histogram according to the all pixels.

Keywords: Local Binary Pattern (LBP); texture feature extraction; texture classification


参考文献:

[1] 王凯 . 基于图像纹理特征提取算法的研究及应用 [D]. 成都:西南交通大学,2013.

[2] HARALICK R M,SHANMUGAM K,DINSTEIN I.Textural features for image classification [J].IEEE Trans Syst Man Cybern,1973(6):610-621.

[3] OJALA T,PIETIKAINEN M,HARWOOD D. A

comparative study of texture measures with classification based on featured distributions [J]. Pattern recognition,1996,29(1):51-59.

[4] 周书仁,殷建平 . 基于 Haar 特性的 LBP 纹理特征 [J]. 软件学报,2013,24(8):1909-1926.

[5] JIN H,LIU Q,LU H,et al. Face Detection Using Improved LBP Under Bayesian Framework [J]. Image & graphics,2004,62:306-309.

[6] TAN X,TRIGGS B. Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions [J]. Transactions on image processing,2010,19(6):1635-1650.

[7] HAFIANE A,SEETHARAMAN G,ZAVIDOVIQUE B. Median Binary Pattern for Textures Classification [J]. Image analysis & recognition,2007,4633:387-398.

[8] 熊俊杰 . 基于改进局部二值模式的纹理分类算法研究 [D].南昌:南昌航空大学,2019.

[9] 刘丽,谢毓湘,魏迎梅,等 . 局部二进制模式方法综述 [J].中国图象图形学报,2014,19(12):1696-1720.

[10] HEIKKIL M,PIETIKAINEN M,SCHMID C. Description of interest regions with local binary Patterns [J]. Pattern recognition,2009,42(3):425-436.

[11] LIU L,FIEGUTH P,GUO Y,et al. Local Binary Features for Texture Classification:Taxonomy and Experimental Study [J].Pattern recognition,2016,62(31):135-160.

[12] 王盼 . 基于改进 LBP 的纹理图像分类 [D]. 保定:河北大学,2012.


作者简介:张云锦(1995—),男,汉族,辽宁葫芦岛人,助理工程师,硕士研究生,研究方向:图像处理。