当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术22年9期

一种基于随机森林的主机安全检测方法研究
张伟娜
(中国民用航空飞行学院洛阳分院,河南 洛阳 471001)

摘  要:目前主机在人们的工作和生活中起着重要作用,网络安全问题愈演愈烈,因此对网络中的主机进行安全检测变得十分迫切。文中用随机森林进行分类,使用训练集构建多组基本的分类模型,然后根据分类模型的投票结果判断主机是否安全。随机森林在分类模型中具有其先天优势,作为一种非线性分类方法其对异常值和噪声具有更好的容忍度。仿真实验结果表明,此检测模型与传统检测模型相比提高了分类精度。


关键词:安全检测;随机森林;分类



DOI:10.19850/j.cnki.2096-4706.2022.09.030


中图分类号:TP391                                             文献标识码:A                                  文章编号:2096-4706(2022)09-0118-03


Research on a Host Security Detection Method Based on Random Forest

ZHANG Weina

(Civil Aviation Flight University of China Luoyang College, Luoyang 471001, China)

Abstract: At present, the host plays an important role in people's work and life, and the network security is becoming increasingly fierce, so it is very urgent to conduct security detection on the host in the network. In this paper, random forest is used for classification, training sets are used to build multiple groups of basic classification models, and then judge whether the host is safe according to the voting results of classification models. Random forest has its inherent advantages in classification model, as a nonlinear classification method, it has better tolerance to outliers and noise. The simulation results show that this detection model improves the classification accuracy compared with the traditional detection model.

Keywords: security detection; random forest; classification


参考文献:

[1] 张雷 . 基于模式匹配的网络入侵检测系统研究 [D]. 成都:西南交通大学,2005.

[2] 周延森,汪永好.网络入侵检测系统模式匹配算法研究 [J].计算机工程与设计,2008(7):1652-1654+1683.

[3] 王辉,陈泓予,刘淑芬 . 基于改进朴素贝叶斯算法的入侵检测系统 [J]. 计算机科学,2014,41(4):111-115+119.

[4] 谭爱平,陈浩,吴伯桥 . 基于 SVM 的网络入侵检测集成学习算法 [J]. 计算机科学,2014,41(2):197-200.

[5] 罗俊松 . 基于神经网络的 BP 算法研究及在网络入侵检测中的应用 [J]. 现代电子技术,2017,40(11):91-94.

[6] SHON T,MOON J. A hybrid machine learning approach to network anomaly detection [J].Information Sciences,2007,177(18):3799-3821.

[7] PALMIERI F,FIORE U. Network anomaly detection through nonlinear analysis [J].Computers & Security,2010,29(7):737-755.

[8] BREIMAN L. Random Forests [J].Machine Learning, 2001,45:5-32.

[9] DWARIKANATH M. Analyzing Training Information From Random Forests for Improved Image Segmentation [J]. IEEE Transactions on Image Processing,2014,23(4):1504-1512.


作者简介:张伟娜(1993—),女,汉族,河南巩义人,网络管理员,硕士研究生,研究方向:网络安全。