摘 要:钢带作为重要的生产原材料,在现代工业生产中有着广泛的应用。但高效的钢带表面质量控制与检测一直是困扰业界的难题,为提高对钢带表面划痕的检测效率,应用机器视觉技术对钢带表面划痕状况进行检测。使用 Halcon 编写基于机器视觉的表面划痕检测程序,对采集图像进行预处理、图像阈值分割、提取联通区域、特征提取和形态学等操作,实现了对钢带表面划痕的快速检测。
关键词:钢带表面划痕;机器视觉;图像处理;缺陷检测
DOI:10.19850/j.cnki.2096-4706.2022.011.026
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2022)11-0103-04
Research on Steel Belt Surface Scratch Detection Method Based on Machine Vision
GUO Jiayu, ZHANG Shigang, YANG Xujie
(School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China)
Abstract: As an important raw material for production, steel belt is widely used in modern industrial production. But efficient steel belt surface quality control and detection has always been a difficult problem in the industry. In order to improve the detection efficiency of steel belt surface scratches, machine vision technology is used to detect the surface scratches situation of steel belts. It uses Halcon to write a surface scratch detection program based on machine vision, and carries out preprocessing of the collected images, image threshold segmentation, extraction of connected areas, feature extraction and morphology and other operation, achieves rapid detection of surface scratches on steel belts.
Keywords: steel belt surface scratch; machine vision; image processing; defect detection
参考文献:
[1] 吕宏峰,夏皓,罗军,等 . 基于机器视觉的电子元器件表面缺陷检测 [J]. 电子产品可靠性与环境试验,2021,39(S1):18-21.
[2] 明五一,贾豪杰,何文斌,等透明件表面缺陷的机器视觉检测综述 [J]. 机械科学与技术,2021,40(1):116-124
[3] 郑彬,王鑫 . 基于机器视觉的型材表面缺陷图像处理 [J].机械设计,2020,37(S1):95-97
[4] 王思琪,魏绍鹏,丁涛,等 . 基于显微机器视觉的 MEMS微构件表面缺陷检测系统研究 [J].湖北工程学院学报,2019,39(3):49-52
[5] 彭雨,谈莉斌,余晓流 . 基于机器视觉的细长产品表面缺陷检测设备研究 [J]. 机械制造与自动化,2021,50(4):166-169+173.
[6] 孙琴,肖书浩,刘誉涵,等 . 基于机器视觉的塑料制品表面缺陷检测研究 [J]. 电子制作,2020(15):56-59+50.
[7] STEGER C,ULRICH M,WIEDEMANN C. Machine Vision Algorithms and Applications [M].[S.I.]:Wiley Vch,2018.
[8] 常宏杰,孙聚运,岳彦芳,等 . 机器视觉在板材表面缺陷检测中的应用 [J]. 机械设计与制造,2017(8):144-146
作者简介:郭嘉宇(2000—),男,汉族,山西大同人,本科在读,研究方向:电子与通信工程;张世钢(1999—),男,穿青人,贵州毕节人,本科在读,研究方向:电子与通信工程;杨旭杰(2001—),男,汉族,甘肃武威人,本科在读,研究方向:图像处理。