摘 要:为了及时、客观、准确地在课堂上了解每个学生的听课状态,采用一种全局多尺度和局部注意力网络(MA-Net) 的表情识别模型,具体来说,模型由三个部分组成:图像预处理及特征提取、全局多尺度模块和局部注意力模块。图像预处理提高输入图像的质量要求,核主成分分析进行特征提取,全局多尺度模块融合不同感受野的特征,降低深度卷积对遮挡和非正面姿态的敏感性,而局部注意力模块可以引导网络专注于局部显著特征,同时定义一个 circle 损失函数以规范整个学习过程,模型在FED-RO 测试集上得到了较高的准确率。
关键词:听课状态;多尺度;注意力网络;circle 损失函数
DOI:10.19850/j.cnki.2096-4706.2022.18.017
课题项目:长春市教育科学“十四五”规划 2021 年度一般课题项目(JKBLX2021071)
中图分类号:TP18 文献标识码:A 文章编号:2096-4706(2022)18-0071-05
Research on Students’ Emotional State Based on Expression Recognition Technology—Taking the Junior Middle School Classroom as an Example
JIAO Shuang1, YAN Yuxing2
(1.Changchun Institute of Education, Changchun 130033, China; 2.Changchun University of Science and Technology, Changchun 130022, China)
Abstract: In order to timely, objectively and accurately understand the listening status of each student in the classroom, a global multi-scale and local attention network (MA-Net) expression recognition model is adopted. Specifically, the model consists of three parts: image preprocessing and feature extraction, global multi-scale module and local attention module. The image preprocessing improves the quality requirements of input images, the kernel principal component analysis performs feature extraction, the global multi-scale module fuses features from different receptive fields, and reduces the sensitivity of deep convolution to the occlusion and non-frontal poses. The local attention module can guide the network to focus on local salient features, at the same time, it defines a circle loss function to standardize the entire learning process, and the model obtains a higher accuracy rate on the FED-RO test set.
Keywords: listening status; multi-scale; attention network; circle loss function
参考文献:
[1] FERNANDEZ P D M,PEÑA F A G,REN T I,et al. FERAtt:Facial Expression Recognition with Attention Net [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Long Beach:IEEE,2019.
[2] KUMAWAT S,VERMA M,RAMAN S. LBVCNN:Local Binary Volume Convolutional Neural Network for Facial Expression Recognition from Image Sequences [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach:IEEE,2019:207-216.
[3] LEE J,KIM S,KIM S,et al. Multi-Modal Recurrent Attention Networks for Facial Expression Recognition [J].IEEE Transactions on Image Processing,2020,1(29):6977-6991.
[4] LI R,TIAN J,CHUA M.C.H. Facial expression classification using salient pattern driven integrated geometric and textual features [J]. Multimed Tools and Applications,2019,78(20):28971-28983.
[5] PUN T. A new method for grey-level picture thresholding using the entropy of the histogram [J]. Computer Vision Graphics & Image Processing,1980,2(3):223-237.
[6] SCHÖLKOPF B,SMOLA A J,Müller K R. Kernel Principal Component Analysis [C]//Artificial Neural Networks - ICANN’97, 7th International Conference,Lausanne:Springer Verlag,1997: 555-559.
[7] 王军,高智勇,刘海华,等 . 基于 KPCA 和 Gabor 小波的特征融合人脸识别 [J]. 现代科学仪器,2010(3):9-13.
[8] WOO S,PARK J,LEE J Y,et al. CBAM:Convolutional Block Attention Module [J].Springer,2018:3-19.
[9] LI Y,ZENG J B,SHAN S G,et al. Patch-Gated CNN for Occlusion-aware Facial Expression Recognition [C]//2018 24th International Conference on Pattern Recognition(ICPR).Beijing: IEEE,2018:2209-2214.
[10] LI Y,ZENG J B,SHAN S G,et al. Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism [J].IEEE Transactions on Image Processing,2019,28(5):2439-2450.
作者简介:焦爽(1991—),女,汉族,吉林公主岭人,助教,硕士,研究方向:图像处理;闫禹行(1990—),男,满族,吉林四平人,初级工程师,硕士,研究方向:图像处理。