摘 要:在对鲸鱼优化算法(WOA)的数学模型深入研究时,发现传统的 WOA 算法在处理一些较为复杂的问题,或者对高维度空间进行搜索时还存在一些不足之处,如收敛速度慢、易陷入局部最优等缺点。针对这些问题,文章提出一种改进的混合鲸鱼优化算法,通过引入精英反向学习、非线性收敛因子和自适应调整搜索组合策略来提高算法收敛速度,弥补传统 WOA 算法的不足。实验结果表明,改进后的算法(IWOA)性能更优,有着广泛的应用前景。
关键词:鲸鱼优化算法;精英反向学习;非线性收敛因子;自适应调整搜索策略
DOI:10.19850/j.cnki.2096-4706.2022.18.025
中图分类号:TP18 文献标识码:A 文章编号:2096-4706(2022)18-0103-04
Research on an Improved Hybrid Whale Optimization Algorithm
NI Yaping, ZHANG Yerong
(Nanjing University of Posts and Telecommunications, Nanjing 210046, China)
Abstract: In an in-depth study of the mathematical model of Whale Optimization Algorithm (WOA), it is found that the traditional WOA algorithm has some shortcomings when dealing with some more complex problems or searching for high-dimensional spaces, such as slow convergence speed, easy to fall into local optimality and other shortcomings. To address these problems, this paper proposes an improved hybrid whale optimization algorithm to improve the convergence speed of the algorithm and make up for the shortcomings of the traditional WOA algorithm by introducing elite reverse learning, nonlinear convergence factor and adaptive adjustment of the search combination strategy. Experimental results show that the improved algorithm (IWOA) has better performance and has wide application prospects.
Keywords: whale optimization algorithm; elite reverse learning; nonlinear convergence factor; adaptive adjustment of search strategy
参考文献:
[1] MEHNE H H,MIRJALILI S. A parallel numerical method for solving optimal control problems based on whale optimization algorithm [J].Knowledge-Based Systems,2018,151:114-123.
[2] MAFARJA M,MIRJALILI S. Whale optimization approaches for wrapper feature selection [J].Applied Soft Computing,2018,62:441-453.
[3] GUO Z Z,WANG P,MA Y F,et al. Whale optimization Algorithm Based on Adaptive Weight and Cauchy Mutation [J/OL]. Microelectronics & Computer,2017(9):20-25[2022-06-10].http:// en.cnki.com.cn/Article_en/CJFDTOTAL-WXYJ201709005.htm.
[4] 钟明辉,龙文.一种随机调整控制参数的鲸鱼优化算法 [J].科学技术与工程,2017,17(12):68-73.
[5] TIZHOOSH H R. Opposition-Based Learning:A New Scheme for Machine Intelligence [C].International Conference on Computational Intelligence for Modelling,Control and Automation and International Conference on Intelligent Agents,Web Technologies and Internet Commerce(CIMCA-IAWTIC’06).Vienna:IEEE,2005:695-701.
[6] 吴成智 . 一种改进的鲸鱼优化算法 [J]. 现代计算机,2019(14):8-13.
作者简介:倪亚萍(1996.11—),女,汉族,江苏如皋人,硕士在读,研究方向:光无线通信;张业荣(1963.04—),男,汉族,安徽和县人,教授,博士,研究方向:电磁散射与成像、电波传播、无线通信的信道建模、无线网的规划与优化。