摘 要:随着基于位置服务应用的不断普及,实现移动对象轨迹实时查询成为当前时空数据库领域的研究热点,其中,移动对象轨迹的 Top-K 查询是面向轨迹大数据的一种快速查询方法。文章对移动对象轨迹查询方法及应用的研究现状进行全面梳理,从不同角度对 Top-K 查询优化算法进行归纳分析,对 Top-K 查询研究中存在的问题和未来研究方向进行总结和展望。
关键词:时空数据库;轨迹查询;Top-K;大数据
DOI:10.19850/j.cnki.2096-4706.2022.23.021
中图分类号:TP301 文献标识码:A 文章编号:2096-4706(2022)23-0077-05
A Summary of Research on Moving Objects Trajectory Top-K Queries
ZHOU Kailai, FENG Xinwei, MENG Qinglei
(College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China)
Abstract: With the growing popularity of location-based service applications, real-time query of moving object trajectories has become a research hotspot in the current spatio-temporal database field. Among them, Top-K query of moving object trajectories is a fast query method for trajectory big data. This paper comprehensively combs the research status of moving object trajectory query methods and applications, summarizes and analyzes the optimization algorithm of Top-K query from different perspectives, and summarizes and prospects the problems and future research directions in Top-K query research.
Keywords: spatio-temporal database; trajectory query; Top-K; big data
参考文献:
[1] OLIVETTI S,GIL M A,SRIDHARAN V K,et al. Merging computational fluid dynamics and machine learning to reveal animal migration strategies [J].Methods in Ecology and Evolution,2021,12(7):1186-1200.
[2] LAAN Z V,FRANZ M,MARKOVI N. Scalable framework for enhancing raw GPS trajectory data: application to trip analytics for transportation planning [J].Journal of Big Data Analytics in Transportation,2021,3:119-139.
[3] TU W,KE M,ZHANG Y T,et al. Real-Time route recommendations for E-Taxies leveraging GPS trajectories [J].IEEE Transactions on Industrial Informatics,2020,17(5):3133-3142.
[4] LUAN W J,LIU G J,JIANG C J,et al. MPTR: A maximal-marginal-relevance-based personalized trip recommendation meth-od [J]. IEEE Transactions on Intelligent Transportation Systems,2018,19(11): 3461-3474.
[5] DENG K,XIE K,ZHENG K,et al. Trajectory indexing and retrieval [C]//Computing with spatial trajectories. New York: Springer,2011:35-60.
[6] FINKEL R A,BENTLEY J L. Quad trees: A data structure for retrieval on composite keys [J].Acta Informatica,1974,4(1):1-9.
[7] 熊才权,马乐乐,孙贤斌 . 空间索引技术研究 [J]. 计算机技术与发展,2010,20(10):219-223+227.
[8] CSABAI I,TRENCSENI M,HERCZEGH G,et al. Spatial indexing of large multidimensional databases [J/OL].arXiv:1209.6490[cs.DB].[2022-07-02].https://doi.org/10.48550/arXiv.1209.6490.
[9] JAE L E,RYU K H,NAM K W. Indexing for efficient managing current and past trajectory of moving object [C]//Asia-Pacific Web Conference. Berlin:Springer,2004:782-787.
[10] CHEN Z B,SHEN H T,ZHOU X F,et al. Searching trajectories by locations: An efficiency study [EB/OL].[2022-06-13].https://www.microsoft.com/en-us/research/publication/searchingtrajectories-by-locations-an-efficiency-study/.
[11] TANG L A,ZANG Y,XIE X,et al. Retrieving k-nearest neighboring trajectories by a set of point locations [EB/OL].[2022-06-15].https://dl.acm.org/doi/10.5555/2035253.2035272.
[12] QI S Y,SACHARIDIS D,BOUROS P,et al. Snapshot and continuous points-based trajectory search [J].GeoInformatica,2017,21(4):669-701.
[13] GÜNTZER U,BALKE W T,KIEßLING W. Optimizing multi-feature queries for image databases [EB/OL].[2022-06-09].https:// dl.acm.org/doi/10.5555/645926.671875.
[14] YADAMJAV M E,WANG S,BAO Z F,et al. Boosting point-based trajectory search with quad-tree [EB/OL].[2022-06-19]. https://www.doc88.com/p-0824873132915.html.
[15] AFZALI P,SHOA N A,RASHIDINEJAD M,et al. Technoeconomic study driven based on available efficiency index for optimal operation of a smart grid in the presence of energy storage system [J].Journal of Energy Storage,2020,32:101853.
[16] Al R T,ARMAN A,ALI M E. Maximizing reverse k-nearest neighbors for trajectories [C]//Australasian Database Conference. Gold Coast:Springer,2018:262-274.
[17] LETTICH F,ORLANDO S,SILVESTRI C. Processing streams of spatial k-NN queries and position updates on manycore GPUs [EB/OL].[2022-05-24].https://dl.acm.org/doi/10.1145/2820783.2820803.
[18] LI J,WANG X T,ZHANG T,et al. Efficient parallel K best connected trajectory (K-BCT) query with GPGPU: A combinatorial min-distance and progressive bounding box approach [EB/OL].[2022-06-19].https://www.doc88.com/p-2751792871495.html.
[19] TRAJCEVSKI G,TAMASSIA R,DING H,et al. Continuous probabilistic nearest-neighbor queries for uncertain trajectories [EB/OL].[2022-06-13].http://users.ece.northwestern. edu/~peters/references/EDBT09submissionSept08.pdf.
[20] LIAN X,CHEN L,YU J X. Pattern matching over cloaked time series[C]//2008 IEEE 24th International Conference on Data Engineering. Cancun:IEEE,2008:1462-1464.
[21] YEH M Y,WU K L,YU P S,et al. PROUD: a probabilistic approach to processing similarity queries over uncertain data streams [C]//Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. NewYork:ACM,2009:684-695.
[22] CHEN M M,WANG N,LIN G F,et al. Network-Based trajectory search over time intervals [J].Big Data Research,2021,25(1):100221.
[23] 周星星,吉根林,张书亮 . 时空轨迹相似性度量方法综述 [J]. 地理信息世界,2018,25(4):11-18.
[24] HSU C C,KUNG P H,YEH M Y,et al. Bandwidthefficient distributed k-nearest-neighbor search with dynamic time warping [C]//2015 IEEE International Conference on Big Data (Big Data).Santa Clara:IEEE,2015:551-560.
[25] ZHANG Z,WANG Y,MAO J,et al. DT-KST: Distributed top-k similarity query on big trajectory streams [C]//International Conference on Database Systems for Advanced Applications. Suzhou: Springer,2017:199-214.
[26] ZHANG Z,MAO J,JIN C,et al. MDTK: bandwidthsaving framework for distributed top-k similar trajectory query [C]//International Conference on Database Systems for Advanced Applications. Gold Coast:Springer,2018:613-629.
[27] LI H,QIU N,CHEN M,et al. FASTDB: An array database system for efficient storing and analyzing massive scientific data [C]// International conference on algorithms and architectures for parallel processing. Zhangjiajie:Springer,2015:606-616.
[28] PAVLO A. In-memory, horizontal, and transactional: the H-store OLTP DBMS project [M]//Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker. 2018:245-251.
[29] RAGAB M,TOMMASINI R,EYVAZOV S, et al. Towards making sense of Spark-SQL performance for processing vast distributed RDF datasets [C]//Proceedings of The International Workshop on
Semantic Big Data. Portland:ACM,2020:1-6.[30] XIE D,LI F,YAO B,et al. Simba: Efficient in-memory spatial analytics[C]//Proceedings of the 2016 International Conference on Management of Data. Burlingame:ACM,2016:1071-1085.
[31] ZHENG B,WANG H,ZHENG K,et al. Sharkdb: an inmemory column-oriented storage for trajectory analysis [J]. World Wide Web,2018,21(2)455-485.
[32] SHANG Z,LI G,BAO Z. DITA: distributed in-memory trajectory analytics [C]//Proceedings of the 2018 International Conference on Management of Data. Houston:ACM,2018:725-740.
[33] ATOOFIAN E. Approximate cache in GPGPUs [J]. ACM Transactions on Embedded Computing Systems (TECS),2020,19(5):1-22.
[34] LEAL E,GRUENWALD L,Zhang J T,et al. TKSimGPU: A parallel top-K trajectory similarity query processing algorithm for GPGPUs [C]//2015 IEEE International Conference on Big Data (Big Data). Santa Clara:IEEE,2015:461-469.
[35] MUSTAFA H,LEAL E,GRUENWALD L. FastTopK: A fast top-ktrajectory similarity query processing Algorithm for GPUs [C]//2018 IEEE International Conference on Big Data (Big Data). Seattle:IEEE,2018:542-547.
[36] DONG K X,ZHANG B W,SHEN Y Y,et al. GAT: A unified GPU-accelerated framework for processing batch trajectory queries [J].IEEE Transactions on Knowledge and Data Engineering, 2018,32(1):92-107.
作者简介:周开来(1978—),男,汉族,湖北襄阳人,副教授,博士研究生,研究方向:数据库和并行计算;冯鑫伟(1997—),男,汉族,河南郑州人,硕士研究生在读,研究方向:数据库和大数据分析;孟庆磊(1998—),男,汉族,河南商丘人,硕士研究生在读,研究方向:数据库和大数据分析。