摘 要:文章分析了全球变暖导致的早高温对枸杞的影响,综述了如何将枸杞生长与机器学习相结合,利用机器学习对枸杞环境、土壤数据进行模型训练和生长预测,为应对环境变化提供有效的参考依据,保证枸杞的产量和质量,加快枸杞智能化、现代化建设。文章详细描述了枸杞生长模型的建设原理和实现方法,为后续数据建模研究提供有效的技术支撑。
关键词:枸杞;机器学习;人工智能;植物模型建设
DOI:10.19850/j.cnki.2096-4706.2022.24.015
基金项目:智慧枸杞园关键技术集成创新示范及采收机械配套研究(2021BEF02001)
中图分类号:TP18 文献标识码:A 文章编号:2096-4706(2022)24-0062-04
Design and Implementation of Server Interface for Growth Prediction of Chinese Wolfberry Based on Machine Learning
CAO Mengchuan, WU Dan, DU Pengxuan
(Ningxia Polytechnic, Yinchuan 750021, China)
Abstract: This paper analyzes the impact of early high temperatures caused by global warming on wolfberries, reviews how to combine the growth of wolfberries with machine learning, and uses machine learning to conduct the model train and predict the growth of Chinese wolfberry environment and soil data, so as to provide an effective reference for coping with environmental changes and ensure the yield and quality of Chinese wolfberries, and accelerate the intelligent and modernization construction of wolfberries. This paper describes in detail the construction principle and implementation method of Chinese wolfberry growth model, and provides effective technical support for subsequent data modeling research.
Keywords: Chinese wolfberry; machine learning; Artificial Intelligence; plant model construction
参考文献:
[1] YAN Y M,RAN L W,CAO Y L. Nutritional, Phytochemical Characterization and Antioxidant Capacity of Ningxia Wolfberry (Lycium barbarum L.) [J].Journal of the Chemical Society of Pakistan,2014,36(6):1079-1087.
[2] 董梁 . 人参、西洋参质量特征与生态因子相关性研究 [D].郑州:河南中医学院,2011.
[3] SOHMIDT M,PUTA H,郑应文 . 为植物生长因子提供最优化条件 [J]. 国外自动化,1986(6):19-24.
[4] 马伟,项波,查红彬,等 . 基于测量数据的植物建模 [J].中国科学(F 辑:信息科学),2009,39(1):134-144.
[5] 丁维龙 . 基于虚拟植物生长模型的农业专家系统研究 [J].浙江工业大学学报,2005(5):525-528+533.
[6] 宋创业,刘慧明,刘高焕,等 . 采用广义加法模型整合数字高程模型和遥感数据进行植被分布预测 [J]. 植物生态学报,2012,36(10):1106-1119.
[7] 何清,李宁,罗文娟,等.大数据下的机器学习算法综述 [J].模式识别与人工智能,2014,27(4):327-336.
[8] 王珏,石纯一 . 机器学习研究 [J]. 广西师范大学学报:自然科学版,2003,21(2):15.
作者简介:曹梦川(1990—),男,汉族,宁夏银川人,助教,硕士,研究方向:数据分析、人工智能。