当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术23年4期

基于 3D 卷积神经网络对局部晚期 NSCLC 患者的 生存预测
马亚楠,宋玥,郝天宇
(兰州财经大学,甘肃 兰州 730020)

摘  要:目前关于非小细胞肺癌(NSCLC)患者生存分析的研究已经有很多,但是大多数都是在医生勾画出肿瘤的基础上进行影像组学特征提取,其次结合临床以及治疗前患者的肿瘤 PET/CT 图像特征进行生存分析的研究。在无医生勾画肿瘤的基础上,采用深度学习的方法,基于患者治疗前后 FDG-PET 是否可以对局部晚期 NSCLC 患者进行生存分析。在采用治疗前和治疗后 FDG-PET 时,基于 3D 卷积神经网络(3D CNN)的深度生存模型的一致性指数(C-index)为 0.67。研究表明,同时使用治疗前后 PDG-PET 进行阅片可以预测出患者的风险概率。


关键词:非小细胞肺癌;治疗前后 PDG-PET;3D 卷积神经网络;生存分析



DOI:10.19850/j.cnki.2096-4706.2023.04.028


中图分类号:TP391                                       文献标识码:A                               文章编号:2096-4706(2023)04-0109-05


Survival Prediction of Patients with Locally Advanced NSCLC Based on 3D CNN

MA Ya'nan, SONG Yue, HAO Tianyu

(Lanzhou University of Finance and Economics, Lanzhou 730020, China)

Abstract: There have been many studies on the survival analysis of patients with non-small cell lung cancer (NSCLC). However, most of the studies are based on the extraction of tumor radiomics features based on the tumour label outlined by the physician, followed by a combination of clinical and pre-treatment PET/CT image features of the patient for survival analysis. Survival analysis of patients with locally advanced NSCLC based on whether pre-treatment and post-treatment FDG-PET can be performed by using a deep learning approach without the basis of tumors label of the physician. The consistency index (C-index) of the deep survival model based on 3D CNN is 0.67 when using pre-treatment and post-treatment FDG-PET. The study shows that simultaneous reading with pre-treatment and post-treatment PDG-PET can predict the risk probability of patient.

Keywords: non-small cell lung cancer; pre-treatment and post-treatment PDG-PET; 3D CNN; survival analysis


参考文献:

[1] SIEGEL R L,MILLER K D,FUCHS H E,et al. Cancer Statistics [J].CA:A Cancer Journal for Clinicians.2022,72(1):7–33.

[2] 中华医学会肿瘤学分会,中华医学会杂志社 . 中华医学会肿瘤学分会肺癌临床诊疗指南:2021 版 [J]. 中华肿瘤杂志,2021,43(6):591-621.

[3] SHIARLI A-M,PATEL P,MCDONALD F. Management of Locally Advanced Non-Small Cell Lung Cancer [M]//JANES S M. Encyclopedia of Respiratory Medicine:Second Edition.Pittsburgh: Academic Press,2022:810-824.

[4] TRUONG M T,VISWANATHAN C,ERASMUS J J. Positron Emission Tomography/Computed Tomography in Lung Cancer Staging,Prognosis,and Assessment of Therapeutic Response [J]. Journal of Thoracic Imaging,2011,26(2):132-46.

[5] COX D R. Regression Models and Life-Tables [M]//KOTZ S, JOHNSON N L. Breakthroughs in Statistics Volume II Methodology and Diitribution.Berlin:Springer,1992:527-541.

[6] HINTON G. Deep Learning—a Technology with the Potential to Transform Health Care [J].JAMA,2018,320(11):1101-1102.

[7] LECUN Y,BENGIO Y,HINTON G. Deep learning [J]. Nature,2015,521(28):436-444.

[8] KATZMAN J L,SHAHAM U,CLONINGER A,et al. Deepsurv:Personalized Treatment Recommender System Using a Cox Proportional Hazards Deep Neural Network [J/OL].arXiv:1606.00931 [stat.ML].[2022-08-03].https://arxiv.org/abs/1606.00931.

[9] VIZCARRA J,PLACE R,TONG L,et al. Fusion in Breast Cancer Histology Classification [C]//the 10th ACM International Conference on Bioinformatics,Computational Biology and Health Informatics.Niagara Falls:ACM,2019:485-493.

[10] NISHIKAWA R M,GIGER M L,DOI K,et al. Effect of Case Selection on the Performance of Computer-Aided Detection Schemes [J].Medical physics,1994,21(2):265-269.

[11] RODRIGUEZ-RUIZ A,TEUWEN J,CHUNG K,et al. Pectoral Muscle Segmentation in Breast Tomosynthesis with Deep Learning [C]//Medical Imaging 2018:Computer-Aided Diagnosis. Houston:SPIE,2018:10575.

[12] WOO S,PARK J,LEE J-Y,et al. CBAM:Convolutional Block Attention Module [J/OL].arXiv:1807.06521 [cs.CV].[2022-08-06].https://arxiv.org/abs/1807.06521v2.

[13] YAO J W,ZHU X L,JONNAGADDALA J,et al. Whole Slide Images Based Cancer Survival Prediction Using Attention Guided Deep Multiple Instance Learning Networks [J/OL].arXiv:2009.11169[eess.IV].[2022-08-09].https://arxiv.org/abs/2009.11169.


作者简介:马亚楠(1996—),女,汉族,河南郑州人,硕士在读,研究方向:信息管理与信息系统;宋玥(1997—),女,汉族,山西吕梁人,硕士在读,研究方向:信息管理与信息系统;郝天宇(2001—),男,汉族,湖北荆门人,本科在读,研究方向:信息管理与信息系统。