摘 要:针对装甲目标图像背景复杂、目标尺度小等问题,提出一种基于 YOLOv5s 的装甲目标检测算法。首先在 FPN 结构中增加一个浅层分支,增强对小目标特征的提取能力;其次通过 Focal Loss 损失函数来平衡正负样本;再次将 CIoU_loss 用作边框回归损失函数,用以提升识别精度;最后将 ECA 注意力模块引入算法中,加强重要特征的表达。实验结果表明,改进算法在自制数据集上 AP 达到 92.9%,相较于原始算法提高了 4.2%,能够很好地满足装甲目标检测任务的精度与速度需求。
关键词:装甲目标;YOLOv5s;特征金字塔;ECA 注意力模块;Focal_loss
DOI:10.19850/j.cnki.2096-4706.2023.05.017
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2023)05-0073-05
An Improved Armored Target Detection Algorithm Based on YOLOv5s
YI Tuming1, WANG Xianquan2, YUAN Wei 1, KONG Qingyong1
(1.Southwest Computer Co., Ltd., Chongqing 400060, China; 2.Chongqing University of Technology, Chongqing 400054, China)
Abstract: Aiming at the problems of complex background and small target scale of armored target image, an armored target detection algorithm based on YOLOv5s is proposed. First, a shallow branch is added to the FPN structure to enhance the ability of extracting small target features; Secondly, the Focal Loss loss function is used to balance the positive and negative samples; CIoU_ Loss is used as the loss function of frame regression to improve the recognition accuracy; Finally, ECA attention module is introduced into the algorithm to enhance the expression of important features. The experimental results show that AP of the improved algorithm on the self-made data set achieves 92.9%, which is 4.2% higher than that of the original algorithm, and can well meet the accuracy and speed requirements of the armored target detection task.
Keywords: armored target; YOLOv5s; characteristic pyramid; ECA attention module; Focal_loss
参考文献:
[1] 邓磊,李海芳 . 基于多尺度整体嵌套池化语义的装甲目标检测 [J]. 激光与红外,2022,52(2):295-304.
[2] 孙皓泽,常天庆,张雷,等 . 基于轻量级网络的装甲目标快速检测 [J]. 计算机辅助设计与图形学学报,2019,31(7):1110-1121.
[3] 王全东,常天庆,张雷,等 . 基于深度学习算法的坦克装甲目标自动检测与跟踪系统 [J].系统工程与电子技术,2018,40(9):2143-2156.
[4] 王曙光,吕攀飞 . 改进 YOLOv2 的装甲车辆目标识别 [J].计算机与现化,2018(9):68-71+79.
[5] HU J,SHEN L,SAMUEL A,et al. Squeeze-and-excitation networks [C]//Proceedings of IEEE conference on computer vision and pattern recognition. Salt Lake City:IEEE,2018:7132-7141.
[6] WANG Q,WU B,ZHU P,et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE,2020:11531-11539.
[7] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014:580-587.
[8] REN S Q,HE K M,ROSS G,et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[9] REDMON J,DIVVALA S K,GIRSHICK R B,et al. You Only Look Once: Unified, Real-Time Object Detection [EB/OL].[2022- 09-25].https://blog.csdn.net/weixin_54546190/article/details/123028952.[10] LIU W,ANGUELOV D,ERHAN D,et al. Ssd: Single
shot multibox detector [C]//European conference on computer vision. Amsterdam:Cham,2016:21-37.
[11] HOWARD,ANDREW G. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. [2022-01-2].https://arxiv.org/pdf/1704.04861v1.pdf.
[12] ZHANG X Y,ZHOU X Y,LIN M X,et al. ShuffleNet: An Extr-emely Efficient Convolutional Neural Network for Mobile Devices [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:6848-6856.
[13] 丛眸,张平,王宁 . 基于改进 YOLOv3 的装甲车辆检测方法 [J]. 兵器装备工程学报,2021,42(4):258-262.
[14] SANDLER M,HOWARD A G,ZHU M L,et al. Mobilenetv2: Inverted residuals and linear bottlenecks [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018:4510-4520.
[15] HOWARD A,SANDLER M,CHU G,et al. Searching for mobilenetv3 [C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul:IEEE Computer Society,2019:1314-1324.
[16] MA N N,ZHANG X Y,ZHENG H T,et al. Shufflenetv2:Practical guidelines for efficient CNN architecture design [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer,2018:122-138.
[17] 王燕妮,余丽仙 . 注意力与多尺度有效融合的 SSD 目标检测算法 [J]. 计算机科学与探索,2022,16(2):438-447.
作者简介:易图明(1969.10—),男,汉族,四川南充人,正高级工程师,国务院政府特殊津贴专家,本科,主要研究方向:通信技术;通讯作者:王先全(1968.09—),男,汉族,四川华蓥人,教授,硕士研究生,主要研究方向:计算机软件技术和智能仪器。