当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术23年5期

基于改进 Retinex 算法的低照度图像增强
邹良娜
(西安工业大学,陕西 西安 710021)

摘  要:通过对比不同图像增强算法,针对传统图像增强算法无法兼顾色彩、细节以及纹理的同步处理等问题,文章提出一种 MSRCR-HIS 图像增强算法,融合直方图转换法与 MSRCR 算法的优势,并将处理后的图像与原始图像进行融合以保留原图细节信息,通过验证,文章提出的算法与经典算法相比,能够有效地改善图像的呈现效果,有利于后续各项实验操作。


关键词:低照度;图像增强;图像融合;多尺度 Retinex



DOI:10.19850/j.cnki.2096-4706.2023.05.027


中图分类号:TP391.4                                        文献标识码:A                                   文章编号:2096-4706(2023)05-0113-04


Low Illumination Image Enhancement Based on Improved Retinex Algorithm

ZOU Liangna

(Xi'an Technological University, Xi'an 710021, China)

Abstract: By comparing different image enhancement algorithms, aiming at the problems that traditional image enhancement algorithms can not take into account the synchronous processing of color, detail and texture, this paper proposes a MSRCR-HIS image enhancement algorithm, which combines the advantages of histogram conversion method with MSRCR algorithm, and fuses the processed image with the original image to retain the details of the original image information. Through verification, compared with the classical algorithm, the algorithm proposed in this paper can effectively improve the rendering effect of images, and it is conducive to subsequent experimental operations.

Keywords: low illumination; image enhancement; image fusion; multi-scale Retinex 


参考文献:

[1] 高古学,赖惠成,刘月琴 . 结合 CLAHE 和改进 MSRCR 的沙尘图像增强 [J]. 计算机仿真,2020,37(8):157-161+430.[2] TIAN X,LIU R,WANG Z Y,et al.High quality 3D 

reconstruction based on fusion of polarization imaging and binocular stereo vision [J].Information Fusion,2022,77:19-28.

[3] LAND E H,MCCAN J J. Lightness and Retinex Theory [J]. Journal of the Optical Society of America,1971,61(1):1-11.

[4] IMMANUEL K,DINESH K A,PRAVEEN K E. Enhanced Intelligent Automated Method to MSRCR Algorithm for Image Enhancement [J].International Journal of Engineering and Advanced Technology,2020,9(3):1398-1401.

[5] ZHANG W,DONG L,PAN X,et al. Single Image Defogging Based on Multi-Channel Convolutional MSRCR [J].IEEE Access,2019,7:2169-3536.

[6] 崔旭东,杨有 . 结合 HE 和改进 MSRCR 的交通雾霾图像增强 [J]. 重庆师范大学学报:自然科学版,2018,35(1):100-106.

[7] 周佐,张静 . 基于同态滤波与直方图均衡的沙尘图像增强研究 [J]. 信息与电脑:理论版,2020,32(23):61-64.

[8] 宋喜娟 . 微光彩色图像增强算法研究 [D]. 西安:中国科学院大学()中国科学院西安光学精密机械研究所).


作者简介:邹良娜 (1996—),女,汉族,山东日照人,硕士研究生在读,研究方向:图像处理。