当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术23年6期

基于导向滤波和小波变换的红外可见光图像融合 改进算法研究
易图明 1 ,王先全 2 ,袁威 1 ,何晓冬 1
(1. 西南计算机有限责任公司,重庆 400060;2. 重庆理工大学,重庆 400054)

摘  要:针对传统模型在跨模态下易产生光晕伪影、颜色失真等问题,提出一种基于导向滤波和小波变换的红外可见光图像融合改进算法。将源图像经由小波变换获得二维低频及高频的子代系数,低频分量采用加权平均融合,高频分量提取权重图后经导向滤波获得细节增强;再将所处理的各分量经小波逆变换获得融合图像。该算法使用开源数据集 TNO 检验效果,经过主客观评估,得出该算法的效果明显优于传统算法,符合研究预期。


关键词:图像融合;小波变换;导向滤波;多尺度分解;红外可见光图像



DOI:10.19850/j.cnki.2096-4706.2023.06.011


中图分类号:TP391                                              文献标识码:A                             文章编号:2096-4706(2023)06-0041-05


Research on Improved Infrared Visible Light Image Fusion Algorithm Based on Guided Filtering and Wavelet Transform

YI Tuming1, WANG Xianquan2, YUAN Wei 1, HE Xiaodong1

(1.Southwest Computer Co., Ltd., Chongqing 400060, China; 2.Chongqing University of Technology, Chongqing 400054, China)

Abstract: Aiming at the problem that the traditional model is prone to produce halo artifacts and color distortion in cross-mode, an improved infrared visible light image fusion algorithm based on guided filtering and wavelet transform is proposed. The sub-generation coefficients of two-dimensional low frequency and high frequency are obtained from the source image through wavelet transform. The low frequency components are fused by weighted average, and the high frequency components are extracted from the weight map, and then the details are enhanced by guided filtering; then the processed components are transformed by inverse wavelet transform to obtain the fused image. The algorithm uses the open source data set TNO to test the effect. After subjective and objective evaluation, it is concluded that the effect of the algorithm is significantly better than the traditional algorithm, which is in line with the research expectation.

Keywords: image fusion; wavelet transform; guided filtering; multi-scale decomposition; infrared visible light image


参考文献:

[1] MA J Y,MA Y,LI C. Infrared and visible image fusion methods and applications: a survey [J].Information Fusion,2019,45:153-178.

[2] LIU Y,CHEN X,WARD R K,et al. Medical image fusion via convolutional sparsity based morphological component analysis [J]. IEEE Signal Processing Letters,2019,26(3):485-489.

[3] ZHOU Z Q,WANG B,SUN L,et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters [J].Information Fusion,2016,30:15-26.

[4] CHEN X G,LI X K. Application of Uniform Design and Genetic Algorithm in Optimization of Reversed Phase Chromatographic Separation [J].Chemometrics and Intelligent Laboratory Systems, 2003,68(2):157-166.

[5] HE K M,SUN J,TA N G X O . G u i d e d i m a g efiltering [EB/OL].[2022-10-05].https://link.springer.com/chapt er/10.1007/978-3-642-15549-9_1/.

[6] XIE W,ZHOU Y Q,YOU M. Improved guided image filtering integrated with gradient information [J].Journal of Image and Graphics,2016,21(9):1119-1126.

[7] YANG H,WU X T,HE B G,et al. Image fusion based on multiscale guided filters [J].Journal of Optoelectronics•Laser,2015,26(1):170-176.

[8] ZHU H R,LIU Y Q,ZHANG W Y. Infrared and visible image fusion based on contrast enhancement and multi-scale edgepreserving decomposition [J].Journal of Electronics and Information Technology,2018,40(6):1294-1300.

[9] NOEL O C,YUKIHIKO Y. Anisotropic guided filtering [J]. IEEE Transactions on Image Processing,2019,29:1397-1412.

[10] JIN H Y,WANG Y Y. A Fusion Method for Visible and Infrared Images Based on Contrast Pyramid with Teaching Learning Based Optimization [J].Infrared Physics & Technology,2014(64):134-142.

[11] LIU C H,QI Y,DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain [J].Infrared Physics and Technology,2017,83:94-102.

[12] CUI G M,FENG H J,XU Z H,et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition [J].Optics Communications, 2015,341:199-209.

[13] SHEN Y,CHEN X P,LIU C. Infrared and visible image fusion based on hybrid model driving [J].Control and Decision,2021,36(9):2143-2151.

[14] 常青,杨程伟,罗彬杰,等 . 基于小波变换的扩散焊超声 C 图像融合算法 [J/OL]. 郑州大学学报:工学版,2022:1-7[2022-10-03].https://kns.cnki.net/kcms/detail/detail. aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZZGY20 220609002&uniplatform=NZKPT&v=0DDgriRsGa8lm2Rel30- g1NfK3xU62OPjWKiQT-kbqv9zfFR5OL3PWcQvMD08LEe.

[15] 宫睿,王小春 . 基于可协调经验小波变换的多聚焦图像融合 [J]. 计算机工程与应用,2020,56(2):201-210.


作者简介:易图明(1969.10—),男,汉族,四川南充人,正高级工程师,国务院政府特殊津贴专家,本科,主要研究方向:通信技术;通讯作者:王先全(1968.09—),男,汉族,四川华蓥人,教授,硕士研究生,主要研究方向:计算机软件技术和智能仪器。