摘 要:利用接收信号强度和信道状态信息进行定位是目前基于Wi-Fi 室内定位技术的两种主要方法,二者各有特色,优势互补。为进一步研究Wi-Fi 室内定位技术,通过参阅文献,从几何、指纹两个方面论述接收信号强度与信道状态信息定位原理以及目前的研究现状,探讨两种方法的发展前景。未来如果能够进一步突破硬件与软件条件的限制,两者实现多源数据的紧耦合,将会极大促进Wi-Fi 定位技术在室内位置服务领域的发展。
关键词:室内定位;Wi-Fi;接收信号强度;信道状态信息
中图分类号:TN92 文献标识码:A 文章编号:2096-4706(2020)21-0048-05
Research Progress of Indoor Positioning Technology Based on Wi-Fi
YU Dan,XIE Shicheng,NING Quanke ,TAI Xiaoman ,ZHONG Chen
(School of Space Information and Surveying Engineering,Anhui University of Science and Technology,Huainan 232001,China)
Abstract:Using received signal strength and channel state information for positioning are currently two main methods based on Wi-Fi indoor positioning technology. Both have their own characteristics and complementary advantages. In order to further study the Wi- Fi indoor positioning technology,by referring to the literature,the principles of RSS and CSI positioning and the current research status are discussed in terms of geometry and fingerprint,and the development prospects of the two methods are discussed. In the future,if we can further break through the limitations of hardware and software conditions and achieve tight coupling of multi-source data between the two,it will greatly promote the development of Wi-Fi positioning technology in the field of indoor location services.
Keywords:indoor positioning;Wi-Fi;received signal strength;channel state information
基金项目:安徽理工大学研究生创新基金项目(2019CX2078)
参考文献:
[1] 陈锐志,陈亮. 基于智能手机的室内定位技术的发展现状和挑战 [J]. 测绘学报,2017,46(10):1316-1326.
[2] 闫大禹,宋伟,王旭丹,等. 国内室内定位技术发展现状综述 [J]. 导航定位学报,2019,7(4):5-12.
[3] COLUCCIA A,RICCIATO F. RSS-Based Localization viaBayesian Ranging and Iterative Least Squares Positioning [J].IEEECommunications Letters,2014,18(5):873-876.
[4] 罗阳倩子,廖威. 基于粒子滤波的RSSI 测距优化的牛顿定位算法 [J]. 仪表技术与传感器,2017(6):116-119+124.
[5] 罗宇锋,王鹏飞,陈彦峰. 基于RSSI 测距的Wi-Fi 室内定位算法研究 [J]. 测控技术,2017,36(10):28-32.
[6] PHAM N H,NGUYEN H H,BARTON R,et al. ANovel Ranging Algorithm for RSS-Based Localization [C]//2018 15thWorkshop on Positioning,Navigation and Communications (WPNC).IEEE,2018:1-5.
[7] EL-NAGGAR A R,WASSAL A,SHARAF K. IndoorPositioning Using WiFi RSSI Trilateration and INS Sensor FusionSystem Simulation [C]//SSIP 2019:Proceedings of the 2019 2ndInternational Conference on Sensors,Signal and Image Processing.NewYork:Association for Computing Machinery New York NY UnitedStates,2019:21-26.
[8] YOU Y,WU C. Indoor Positioning System With CellularNetwork Assistance Based on Received Signal Strength Indication ofBeacon [J].IEEE Access,2019,8:6691-6703.
[9] 党小超,司雄,郝占军,等. 一种基于信道状态信息的无源室内指纹定位算法 [J]. 计算机工程,2018,44(7):114-120.
[10] WU K S,XIAO J,YI Y W,et al. FILA:Fine-grainedindoor localization [C]//2012 Proceedings IEEE INFOCOM.IEEE,2012:2210-2218.
[11] WANG J,JIANG H B,XIONG J,et al. Low Human-Effort,Device-Free Localization With Fine-Grained Subcarrier Information [J].IEEE Transactions on Mobile Computing,2018,17(11):2550-2563.
[12] VASISHT D,KUMAR S,KATABI D. Decimeter-levellocalization with a single WiFi access point [C]//NSDI’16:Proceedingsof the 13th Usenix Conference on Networked Systems Design andImplementation.California:USENIX Association,2016:165-178.
[13] XIONG J,JAMIESON K. Arraytrack:A fine-grainedindoor location system [C]//NSDI’13:Proceedings of the 10thUSENIX conference on Networked Systems Design and Implementation.California:USENIX Association,2013:71-84.
[14] KOTARU M,JOSHI K,BHARADIA D,et al. SpotFi:Decimeter Level Localization Using WiFi [J].Acm Sigcomm ComputerCommunication Review,2015,45(4):269-282.
[15] BAHL P,PADMANABHAN V N. RADAR:an in-buildingRF-based user location and tracking system [C]//Proceedings IEEEINFOCOM 2000. Conference on Computer Communications. NineteenthAnnual Joint Conference of the IEEE Computer and CommunicationsSocieties,2000,2:775-784.
[16] 解梅,佟异. 基于脊线采样的指纹识别算法 [J]. 电子学报,2003(10):1503-1505.
[17] LIU W,FU X,DENG Z L,et al. Smallest enclosing circlebasedfingerprint clustering and modified-WKNN matching algorithmfor indoor positioning [C]//2016 International Conference on IndoorPositioning and Indoor Navigation(IPIN).IEEE,2016.
[18] 宋春景. 基于AP 点选择和指纹扩充的WLAN 室内定位算法研究 [D]. 徐州:中国矿业大学,2018.
[19] LAITINEN E,LOHAN E S. On the choice of access pointselection criterion and other position estimation characteristics forWLAN-based indoor positioning [J].Sensors,2016,16(5):737.
[20] TERAMOTO Y,ASAHARA A. Wireless LAN based indoorpositioning using radio-signal strength distribution modeling [C]//2012International Conference on Indoor Positioning and Indoor Navigation(IPIN).IEEE,2012:1-7.
[21] LIU F,LIU J,YIN Y Q,et al. Survey on WiFi-basedindoor positioning techniques [J].IET Communications,2020,14(9):1372-1383.
[22] 郭妍,陈晓,任晓晔. 一种优化随机森林模型的室内定位方法 [J]. 激光杂志,2018,39(10):70-74.
[23] 徐亮. 基于深度信念网络的室内定位算法研究 [D]. 徐州:中国矿业大学,2018.
[24] 胡久松,刘宏立,肖郭璇,等. 一种基于压缩感知与最近邻的联合定位方法 [J]. 电子测量与仪器学报,2018,32(6):72-78.
[25] 李新春,房梽斅,张春华. 基于KPCA 和改进GBRT 的室内定位算法 [J]. 传感技术学报,2019,32(3):430-437.
[26] 康晓非,李梦梦,乔威. 基于WiFi 指纹的高精度室内定位融合算法 [J]. 西安科技大学学报,2020,40(3):470-476.
[27] YOUSSEF M,AGRAWALA A. The Horus location
determination system [J].Wireless Networks,2008,14(3):357-374.
[28]TALV I T I E J,R E N F O R S M,L O H A N E S . N o v e lIndoor Positioning Mechanism Via Spectral Compression [J].IEEECommunications Letters,2016,20(2):352-355.
[29] LI Z,LIU J B,WANG Z M,et al. A Novel Fingerprinting Method of WiFi Indoor Positioning Based on Weibull Signal Model [C]//China Satellite Navigation Conference(CSNC)2018 Proceedings,2018:297-309.
[30] XIAO J,WU K S,YI Y W,et al. FIFS:Fine-grained indoor fingerprinting system [C]//2012 21st international conference on computer communications and networks(ICCCN).IEEE,2012.
[31] CHAPRE Y,IGNJATOVIC A,SENEVIRATNE A,et al.Csi-mimo:Indoor Wi-Fi fingerprinting system [C]//39th annual IEEE conference on local computer networks.IEEE,2014:202-209.
[32] ZHANG L,HU Y J,LIU Y F,et al. WiCLoc:A NovelCSI-based Fingerprint Localization System [J].International Journal of Pattern Recognition and Artificial Intelligence,2020,34(4):23.
[33] WANG X Y,GAO L J,MAO S W,et al. DeepFi:Deep learning for indoor fingerprinting using channel state information [C]//2015 IEEE wireless communications and networking conference(WCNC).IEEE,2015:1666-1671.
[34] WANG X Y,GAO L J,MAO S W. PhaseFi:Phase Fingerprinting for Indoor Localization with a Deep Learning Approach [C]//2015 IEEE Global Communications Conference(GLOBECOM).IEEE,2015.
[35]C H E N H, Z H A N G Y F, L I W,e t a l . C o n F i:Convolutional Neural Networks Based Indoor Wi-Fi Localization UsingChannel State Information [J].IEEE Access,2017,5:18066-18074.
作者简介:余丹(1997—),女,汉族,安徽宿州人,硕士研究生,研究方向:空间定位与导航技术。