摘 要:数字化彻底解决各种不方便,然而没有摆脱采样损伤导致冗余爆炸式膨胀。由于理解模式不一样,计算机跟生命体凭借算法进行对接存在难以克服的局限性。从自然智能到人工智能的缺失环节,适合选择物理学层面和生物学层面搜索答案。围绕天地人一体化实现途径,提出一种通信多维信息耗散工具变量。尝试通过描述空间与时间的转化,进一步填充电子技术和光学技术的鸿沟。
关键词:工具变量;太赫兹鸿沟;非平衡复杂性;微弱信号;洛伦兹变换
DOI:10.19850/j.cnki.2096-4706.2021.18.018
中图分类号:TN01 文献标识码:A 文章编号:2096-4706(2021)18-0068-03
Research on Information Dissipation Instrumental Variable for Multidimensional Scenario Integrated Communication Based on Lorentz Transformation
XU Ke
(School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China)
Abstract: Digitization completely solves various inconveniences, but it does not get rid of sampling damage, resulting in redundant explosive expansion. Because the understand pattern is different, there are insurmountable limitations in the docking of computers with organisms rely on algorithms. The missing link from natural intelligence to artificial intelligence is suitable for searching answers at the level of physics and biology. Focusing on the realization of the integration of satellite-terrestrial and human, a communication multidimensional information dissipation instrumental variable is proposed. This paper attempts to further fill the gap between electronic technology and optical technology by describing the transformation of space and time.
Keywords: instrumental variable; Terahertz gap; non-equilibrium complexity; weak signal; Lorentz transformation
参考文献:
[1] DAHLMAN E,PARKVALL S,SKÖLD J. 5G NR: The Next Generation Wireless Access Technology [M].Pittsburgh: Academic,2018.
[2] O’HARA J F,EKIN S,CHOI W,et al. APerspectiveonTerahertz Next-GenerationWirelessCommunications[J].Technologies,2019,7 (2):43.
[3] LIOLIS K,GEURTZ A,SPERBER R,et al. Use Cases and Scenarios of 5G Integrated Satellite-Terrestrial Networks for Enhanced Mobile Broadband:The SaT5G Approach [J].International Journal of Satellite Communications and Networking,2019,37(2):91-112.
[4] AFSANA F,ASIF-UR-RAHMAN M,AHMED M R,et al. An Energy Conserving Routing Scheme for Wireless Body Sensor Nanonetwork Communication [J].IEEE Access,2018,6:9186-9200.
[5] ULLMAN S. Using Neuroscience to Develop Artificial Intelligence [J].Science,2019,363(6428):692-693.
[6] TSIPRAS D,SANTURKAR S,ENGSTROM L,et al. From ImageNet to Image Classification:Contextualizing Progress on Benchmarks [C]//International Conference on Machine Learning. Vienna,2020:9625-9635.
[7] SNYDER M P,GINGERAS T R,MOORE J E,et al. Perspectives on ENCODE [J].Nature,2020,583(7818):693- 698.
[8] ANDERSON S L,BOYD P G,GLADYSIAK A,et al. Nucleobase Pairing and Photodimerization in a Biologically Derived Metal-Organic Framework Nanoreactor [J].Nature Communications, 2019,10(1):1612.
[9] BALL P. Schrödinger's Cat Among Biology's Pigeons:75 Years of What Is Life? [J].Nature,2018,560(7720):548-550.
[10] LEDITZKY F,LEUNG D,SMITH G. Dephrasure Channel and Superadditivity of Coherent Information [J/OL].Physical Review Letters,2018,121(16):160501.[2021-06-08].https://link.aps.org/ doi/10.1103/PhysRevLett.121.160501.
作者简介:徐恪(2000—),男,汉族,云南大理人,IEEE CS 准会员/ CCF 学生会员,本科在读,主要研究方向:信息与通信、 计算机、人工智能。