摘 要:为了保障网络系统的安全与稳定,需要进行网络入侵检测模型研究,目前具有代表性的检测系统是基于遗传算法找出网络入侵的特征子集,但该系统检测准确性较低且训练时间过长。为此,本文将特征选择算法应用到网络实时入侵检测系统中,提出了一种基于特征选择的实时入侵检测方法。通过搭建非法入侵检测实验平台将该方法与基于遗传算法的网络入侵检测方法做比较,实验结果表明,该方法在检测攻击的准确率方面优于另一入侵检测系统,并且所需检测时间也短于另一检测系统。
关键词:特征选择算法;网络入侵;实时检测系统
中图分类号:TP393.08;TP181 文献标识码:A 文章编号:2096-4706(2019)20-0157-03
Network Real-time Intrusion Detection System Based on Feature Selection Algorithms
DENG Xinghua
(Shangqiu College,Shangqiu 476000,China)
Abstract:In order to ensure the security and stability of network system,it is necessary to study the network intrusion detection model. At present,the representative detection system is based on genetic algorithm to find the characteristic subset of network intrusion,but the detection accuracy of the system is low and the training time is too long. Therefore,feature selection algorithm is applied to network real-time intrusion detection system,and a real-time intrusion detection method based on feature selection is proposed. This method is compared with the network intrusion detection method based on genetic algorithm by building an experimental platform of illegal intrusion detection. The experimental results show that this method is superior to the other intrusion detection system in detection accuracy,and the detection time is shorter than the other detection system.
Keywords:feature selection algorithm;network intrusion;real-time detection system
参考文献:
[1] 戴远飞,陈星,陈宏,等. 基于特征选择的网络入侵检测方法 [J]. 计算机应用研究,2017,34(8):2429-2433.
[2] 徐慧,刘翔,方策,等. 一种基于可拓距的特征变换方法及其在网络入侵检测中的应用 [J]. 河南师范大学学报(自然科学版),2017,45(5):101-107.
[3] 睢丹,黄永灿. 基于改进遗传算法的网络入侵检测 [J]. 数字技术与应用,2016(4):191-192.
[4] 安尼瓦尔·加马力,亚森·艾则孜,木尼拉·塔里甫. 基于连接数据分析和OSELM 分类器的网络入侵检测系统 [J]. 计算机应用研究,2017,34(12):3749-3752.
作者简介:邓兴华(1982-),男,汉族,河南商丘人,讲师,本科,研究方向:网络技术,电子商务。