摘 要:随着移动互联网的发展,人们纷纷转向在线课程等线上学习,然而海量学习资源的出现引发了诸如“学习迷航”和“信息过载”等问题,给学习者带来巨大挑战,亟待解决。文章运用 lxml、RE 等爬虫手段获取慕课网用户和用户学习课程相关信息,并利用 Python 软件对慕课网在线学习者的特征进行可视化数据分析,基于学习者特征构建个性化学习路径,有效解决了网络迷航问题。
关键词:在线学习者;特征;个性化;学习路径
DOI:10.19850/j.cnki.2096-4706.2021.09.033
基金项目:广东省教育科学“十三五”规划 项目(2018GXJK320,2019GXJK272)
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2021)09-0127-04
Research on Personalized Learning Path Based on the Characteristics of Online Learners
YOU Qi,CHEN Hongling
(Guangdong Polytechnic of Science and Technology,Zhuhai 519090,China)
Abstract:With the development of mobile internet,people have turned to online courses and other online learning. However,the emergence of a large number of learning resources has caused problems such as “learning trek” and “information overload”,which has brought great challenges to learners and need to be solved urgently. In this paper,crawling means such as lxml and RE are used to obtain the relevant information of IMOOC users and user learning courses,and Python software is used to make visual data analysis to the characteristics of IMOOC online learners,and builds a personalized learning path based on learners’characteristics,which effectively solves the problem of network getting lost.
Keywords:online learner;characteristic;personalized;learning path
参考文献:
[1] 中共中央国务院印发《中国教育现代化 2035》 [J]. 人民 教育,2019(5):7-10.
[2] 钟绍春.构建信息时代教育新模式 [J]. 电化教育研究, 2019,40(4):23-29.
[3] 中国互联网络信息中心 .CNNIC 发布第 47 次《中国互联 网络发展状况统计报告》 [R/OL].(2021-02-03).http://cnnic. cn/gywm/xwzx/rdxw/20172017_7084/202102/t20210203_713 64.htm.
[4] 唐烨伟,茹丽娜,范佳荣,等 . 基于学习者画像建模的个 性化学习路径规划研究 [J]. 电化教育研究,2019,40(10):53- 60.
[5] 单佩佩 . 基于知识图谱的个性化推荐研究 [J]. 电脑知识与 技术,2020,16(36):177-178+184.
[6] 段玉聪,邵礼旭,崔立真,等 . 基于知识图谱的云端个 性化测试推荐 [J]. 小型微型计算机系统,2018,39(12):2743- 2747.
[7] 黄立威,江碧涛,吕守业,等 . 基于深度学习的推荐系统 研究综述 [J]. 计算机学报,2018,41(7):1619-1647.
作者简介:游琪(1981—),女,汉族,江西九江人,讲师, 硕士研究生,研究方向:教育大数据;陈红玲(1980—),女,汉 族,湖南邵阳人,讲师,硕士研究生,研究方向:大数据挖掘。