当前位置>主页 > 期刊在线 > 信息化应用 >

信息化应用22年12期

智能无人监管配电网实训室的建设与研究
余国忠,邹健辉,宋华,樊中奎
(深圳供电局有限公司,广东 深圳 518000)

摘  要:配电网在电能分配中具有重要的作用,电力主管部门需要对大量的从业人员进行技能培训,给培训工作带来极大的挑战,人工智能技术的发展为建设智能无人监管的实训室提供了基础。系统采用人证合一方式核验培训人员的身份,通过行人跟踪及人脸识别判定培训人员是否进行了项目的实训及考核,并判定其是否执行了考核直至实训及考核成绩达标方可完成实训的要求。智能实训室的建设极大减轻了培训工作的劳动强度,提高了培训的质量,对于配电网实训工作具有重要的意义。


关键词:配电网;无人监管;人工智能;人脸识别



DOI:10.19850/j.cnki.2096-4706.2022.012.030


中图分类号:TP311.5                                     文献标识码:A                                 文章编号:2096-4706(2022)12-0115-04


Construction and Research of Intelligent Unsupervised Distribution Network Practical Training Room

YU Guozhong, ZOU Jianhui, SONG Hua, FAN Zhongkui

(Shenzhen Power Supply Co., Ltd., Shenzhen 518000, China)

Abstract: The distribution network plays an important role in power distribution. The power competent department needs to conduct skill training for a large number of employees, which brings great challenges to the training work. The development of artificial intelligence technology provides a foundation for building an intelligent and unsupervised practical training room. The system verifies the identity of the trainees by using the combination of person and certificate, determines whether the trainees have carried out the practical training and examination of the project through pedestrian tracking and face recognition, and determines whether they have implemented the assessment, the practical training requirements can be completed until the practical training and assessment results meet the standards. The construction of an intelligent practical training room greatly reduces labor intensity of training work and improves the training quality, which is of great significance for the practical training work of the distribution network.

Keywords: distribution network; unsupervised; artificial intelligence; face recognition


参考文献:

[1] 汪金礼,杨可军,张帆,等 . 基于“AI+”的变电站作业人员行为管控设计 [J]. 无线互联科技,2019,16(23):37-38.

[2] 徐越峰,冯杰,纪云鸿,等 . 基于物联网技术的电力现场作业安全管理系统设计 [J]. 制造业自动化,2019,41(8):110-114.

[3] 单巍,王江涛,陈得宝,等 . 基于深度卷积神经网络的红外图像行人检测 [J]. 激光与红外,2020,50(5):634-640.

[4] 高明,左红群,柏帆,等 . 融合视觉关系检测的电力场景自动危险预警 [J]. 中国图象图形学报,2021,26(7):1583-1593.

[5] 孔英会,王维维,张珂,等 . 基于改进 Mask R-CNN 模型的电力场景目标检测方法 [J]. 科学技术与工程,2020,20(8):3134-3142.

[6] 祝永志,苏晓云 . 基于多任务卷积神经网络的人脸识别技术研究 [J]. 通信技术,2020,53(3):718-723.


作者简介:余国忠(1971—),男,汉族,广东深圳人,本科,研究方向:配电线路及配网自动化。