摘 要:通常移动机器人的路径规划是在地图平面上,将机器人简化为质点或圆形,再对障碍物的轮廓进行膨胀得出的,非圆运动体沿着这样的规划路径运行,很可能会在变向区段受到干扰,或者规划中被判定为无路可走,而实际上可在一定条件下通行。考虑 AMV 形状、大小几何约束和道路条件,经建模计算出 AMV 以斜向平移、定点自转和沿曲线转弯等方式通过变向段的约束参数;模拟 AMV 连续运动通过变向段,得到其可通过的车体中心可活动范围,在此范围内的路径既安全又不过于保守。
关键词:AMV;非圆车体;规划路径;变向;可活动范围
DOI:10.19850/j.cnki.2096-4706.2021.12.004
基金项目:广东省自然科学基金项目(202 0A1515011503);广东高校重点平台和科研项目 (2019KTSCX003)
中图分类号:TP18;TP242 文献标识码:A 文章编号:2096-4706(2021)12-0014-04
Study on Vehicle Body Movable Range of Non-circular AMV in Direction Change Section
QUAN Sibo1,2 , WANG Ronghui 2
(1.Foshan Shaoma Intelligent Equipment Technology Co., Ltd., Foshan 528225, China; 2.South China University of Technology, Guangzhou 510641, China)
Abstract: Generally, the path planning of mobile robot is obtained by simplifying the robot into a mass point or a circle on the map plane, and then expanding the outline of the obstacles. If the non-circular moving body runs along such a planned path, it is likely to be disturbed in the direction change section, or it is determined that there is no way to go in the planning, but it can actually pass through under a certain condition. Considering the shape, size and geometric constraints of the AMV and road conditions, the constraint parameters of AMV passing through the direction change section by oblique translation, fixed-point rotation, and turning along the curve are calculated through modeling; simulate the continuous movement of AMV passing through the direction change section to obtain the movable range of the vehicle body center that it can pass through, and the path within this range is safe and not too conservative.
Keywords: AMV; non-circular vehicle body; planned path; direction change; movable range
参考文献:
[1] COSTA M M,SILVA M F. A Survey on Path Planning Algorithms for Mobile Robots [C]//2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).Porto: IEEE,2019:1-7.
[2] PATLE B K,BABU L G,PANDEY A,et al. A review: On path planning strategies for navigation of mobile robot [J].Defence Technology,2019,15(4):582-606.
[3] OSMANKOVIC D,TAHIROVIC A,MAGNANI G. All terrain vehicle path planning based on D* lite and MPC based planning paradigm in discrete [C]//space2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).Munich:IEEE,2017: 334-339.
[4] GURUJI A K,AGARWAL H,Parsesiya D K. Time-efficient A* Algorithm for Robot Path Planning [J].Procedia Technology, 2016,23:144-149.
[5] ZHONG X Y,TIAN J,HU H S,et al. Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment [J].Journal of Intelligent & Robotic Systems,2020,99:65-77.
[6] SPRUNK C,LAU B,PFAFF P. An accurate and efficient navigation system for omnidirectional robots in industrial environments [J].Autonomous Robots,2017,41:473-493.
[7] 王东云,徐艳平,瞿博阳 . 基于改进蜂群算法的机器人路 径规划 [J]. 计算机系统应用,2017,26(2):145-150.
[8] PARASKEV T Z,ELIAS K X. AGV routing and motion planning in a flexible manufacturing system using a fuzzy-based genetic algorithm [J].The International Journal of Advanced Manufacturing Technology volume,2020,109:1801-1813.
[9] 余娜娜,李铁克,王柏琳,等 . 自动化分拣仓库中多 AGV 调度与路径规划算法 [J]. 计算机集成制造系统,2020,26(1): 171-180.
[10] 王洪斌,尹鹏衡,郑维,等 . 基于改进的 A* 算法与动态 窗口法的移动机器人路径规划 [J]. 机器人,2020,42(3):346- 353.
作者简介:全思博(1983—),男,汉族,江西赣州人,高级 工程师,博士,研究方向:移动机器人自主导航;通讯作者:王荣 辉(1995—),男,汉族,浙江杭州人,硕士研究生,研究方向: 机器视觉与智能机器人技术。