摘 要:随着社会的不断发展,人们对室内定位精度的要求越来越高。针对单传感信息定位精度不高、抗干扰能力不强、算法复杂度较大等问题,提出一种融合多传感信息的定位算法。该算法通过对RFID 标签径向速度与移动目标径向速度的匹配,快速识别并定位移动目标。已在服务机器人身上针对该算法展开实验测试,实验结果表明,该算法能够快速准确地定位到动态目标。
关键词:多传感信息;信息融合;径向速度匹配
DOI:10.19850/j.cnki.2096-4706.2023.08.008
中图分类号:TP301.6 文献标识码:A 文章编号:2096-4706(2023)08-0033-04
Research on a Positioning Algorithm Based on Multi-sensor Information Fusion
LIANG Gaoli 1, DENG Shijun 2, LEI Hao 1
(1.Sichuan Vocational College of Information Technology, Guangyuan 628040, China;2.China Construction Underground Space Co., Ltd., Chengdu 610052, China)
Abstract: With the continuous development of society, people require higher and higher accuracy of indoor positioning. Aiming at the problems of low positioning accuracy of single-sensor information, weak anti-interference ability, and large algorithm complexity, this paper proposes a positioning algorithm that integrates multi-sensor information. The algorithm matches the radial velocity of the RFID tag with the radial velocity of the moving target to quickly identify and locate the moving target. The algorithm has been tested on the service robot, and the experimental results show that the algorithm can locate the dynamic target quickly and accurately.
Keywords: multi-sensor information; information fusion; radial velocity matching
参考文献:
[1] 张胜军,林若琳. 浅谈室内定位技术现状 [J]. 测绘与空间地理信息,2018,41(7):128-131.
[2] LIU X L,XIAO B,LI K Q,et al. RFID Estimation With Blocker Tags [J].IEEE/ACM Transactions on Networking,2017,25(1):224-237.
[3] HE S N,CHAN S H G. Wi-Fi Fingerprint-Based Indoor Positioning:Recent Advances and Comparisons [J].IEEE Communications Surveys & Tutorials,2016,18(1):466-490.
[4] YASSIN A,NASSER Y,AWAD M,et al. Recent Advances in Indoor Localization:A Survey on Theoretical Approaches and Applications [J].IEEE Communications Surveys & Tutorials,2017,19(2):1327-1346.
[5] 赵妍,解迎刚,陈莉莉. 基于SLAM 算法的机器人智能激光定位技术的研究 [J]. 激光杂志,2019,40(7):169-173.
[6] 刘琴,明振,李金波. 多传感器数据融合定位方法及其安防机器人:CN109612462A [P].2019-04-12.
[7] 王铭艺,贺利乐,李育,等. 多传感器信息融合的移动机器人定位算法研究 [J]. 测试科学与仪器:英文版,2020,13(4):152-160.
[8] 刘金. 基于传感器融合的室内定位技术研究 [D]. 北京:北京邮电大学,2019.
[9] 毛文勇,张文安,仇翔. 基于多传感器融合的机器人轨迹跟踪控制 [J]. 控制工程,2020,27(7):1125-1130.
[10] SUN Y L,GUAN L W,CHANG Z Y,et al. Design of a Low-Cost Indoor Navigation System for Food Delivery Robot Based on Multi-Sensor Information Fusion [J/OL].Sensors(Basel,Switzerland),2019,19(22):[2022-10-28].https://www.mdpi.com/1424-8220/19/22/4980.
[11] GU H Y,JIN C C,YUAN H Y,et al. Design and Implementation of Attitude and Heading Reference System with Extended Kalman Filter Based on MEMS Multi-Sensor Fusion [J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2021,29(Supp01):157-180.
[12] 吴佳怡,冯锋. 基于多传感信息融合的仓储定位追踪系统研究 [J]. 计算机技术与发展,2019,29(6):134-137.
[13] 周亚琼. 一种基于多传感器信息融合定位技术的机器人:CN110370245A [P].2022-08-12.
[14] 王广奇. 基于RFID 和激光传感器的语义地图更新及机器人定位方法研究 [D]. 济南:山东大学,2013.
作者简介:梁高丽(1992—),女,汉族,四川成都人,助教,硕士,研究方向:机器人定位与导航;邓仕军(1989—),男,汉族,四川成都人,工程师,学士,研究方向:室内定位技术。