摘 要:当前人类社会正处于大数据和人工智能的时代,大数据和人工智能的迅速发展,正在改变人类社会的方方面面。核工业是一门学科门类多、开拓领域广、技术密集程度高的综合性工业,我国核工业发展数十年来已积累了大量的数据,如何借助这些数据基于合适的算法来实现核工业设计、生产、制造、运行的智能化是一个值得探讨的问题,文章就大数据、人工智能算法在核工业领域的一些应用进行了分析研究。
关键词:大数据;人工智能;核工业;算法
DOI:10.19850/j.cnki.2096-4706.2021.24.033
基金项目:四川省科技计划项目(2020YFG0201)
中图分类号:TP18 文献标识码:A 文章编号:2096-4706(2021)24-0130-03
Application Research of Big Data Algorithms in the Field of Nuclear Industry
YANG Xiaoqian, ZHENG Jiong, ZHANG Lidan, MA Haoxuan, CUI Chen
(Nuclear Power Institute of China, Chengdu 610213, China)
Abstract: The current human society is in the era of big data and artificial intelligence. The rapid development of big data and artificial intelligence is changing all aspects of human society. The nuclear industry is a comprehensive industry with many disciplines, wide development fields and high technology intensity. China’s nuclear industry has accumulated a large amount of data for decades. How to use these data to realize the intellectualization of nuclear industry design, production, manufacturing and operation based on appropriate algorithms is a problem worthy of discussion. This paper analyzes and studies some applications of big data and artificial intelligence algorithms in the field of nuclear industry.
Keywords: big data; artificial intelligence; nuclear industry; algorithm
参考文献:
[1] 马杰,张龙飞,余刃,等 . 基于 PCA 与 SDG 的反应堆一回路系统故障诊断方法研究 [J]. 核动力工程,2021,42(3): 197-202.
[2] 曹桦松,孙培伟 . 基于 PCA-RBF 神经网络的小型压水堆故障诊断方法研究 [J]. 仪器仪表用户,2021,28(1):49-55.
[3] SUBRAMANIAN S,CHOUSE F,NATARAJAN P. Fault diagnosis of batch reactor using machine learning methods [J/OL]. Modelling and Simulation in Engineering,2014:1-15[2021-09-25]. https: //doi.org/10.1155/2014/426402.
[4] ADHI T P,SAPUTRO U E. Data Reconciliation and Gross Error Detection for Troubleshooting of Ammonia Reactor [J/OL]. MATEC Web of Conferences,2018,156:1-6[2021-09-25].https:// doi.org/10.1051/matecconf/201815603029.
[5] 颉利东,邬芝胜,黄捷,等 . 基于深度学习的船用核动力管路系统故障诊断方法研究 [J]. 科技视界,2020(15):37-40.
[6] 王航 . 模型驱动的核电站混合式故障诊断策略研究 [D]. 哈尔滨:哈尔滨工程大学,2018.
[7] 陶显,侯伟,徐德 . 基于深度学习的表面缺陷检测方法综述 [J]. 自动化学报,2021,47(5):1017-1034.
[8] PARK J K,KWON B K,PARK J H,et al. Machine learning-based imaging system for surface defect inspection [J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2016,3:303-310.
[9] CHEN F,JAHANSHAHI M R. NB-CNN:Deep LearningBased Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion [J].IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2018,65(5):4392-4400.
[10] 宋英明,梁烨,叶凯萱,等 . 核设施退役过程中的辐射场重构与拆除路径优化 [J]. 核技术,2017,40(5):54-60.
[11] BAO Y,WANG Y. A C-SVM Based Anomaly Detection Method for Multi-Dimensional Sequence over Data Stream [C]//2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS).Wuhan:IEEE,2017:948-955.
[12] CHEUNG C,VALDES J J,CHAVEZ R S,et al. Failure Modeling of a Propulsion Subsystem:Unsupervised and Semisupervised Approaches to Anomaly Detection [J].International Journal of Pattern Recognition and Artificial Intelligence,2019,33(11): [2021-09-25].https://doi.org/10.1142/S0218001419400196.
[13] 龚晓菲 . 工业互联网平台数据的异常检测研究 [D]. 北京:北京邮电大学,2019.
[14] DENKENA B,DITTRICH M A,NOSKE H,et al. Statistical approaches for semi-supervised anomaly detection in machining [J].Production Engineering,2020,14:385-393.
[15] 王玉杰 . 面向大数据应用的情境感知异常检测算法研究 [D]. 兰州:兰州大学,2018.
作者简介:杨笑千(1993—),男,汉族,河南洛阳人,任职于信息化与网络管理中心,工程师,工学硕士,研究方向:大数据 应用。