当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术2020年2期

基于区域梯度压缩的少纹理目标候选框提取算法
彭茂庭
(南京航空航天大学 电子信息工程学院,江苏 南京 210016)

摘  要:针对某些应用中目标表面纹理较少,目标检测困难的问题,提出了一种基于区域梯度压缩的少纹理目标候选框提取算法。该算法是对模板匹配算法OCM 的改进。算法对局部区域梯度方向进行压缩,保持了较低的计算复杂度,并且提出了新的梯度方向压缩方法与相似度衡量方法。实验证明,该算法相较于OCM 算法,在产生接近数量候选框的情况下,召回率提高了6.5%;在召回率接近时,产生的候选框数量减少了41.9%。


关键词:少纹理目标;目标检测;模板匹配;目标候选框提取;量化编码梯度方向;二进制梯度方向压缩



中图分类号:TP391         文献标识码:A         文章编号:2096-4706(2020)02-0102-04


Texture-less Object Candidate Box Extraction Algorithm Based on Region Orientation Compression

PENG Maoting

(College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)

Abstract:In some applications,the objects to be detected don’t have enough surface texture informations,which causes a great challenge to the accurate object detection. Aiming at above issue,this paper proposes a candidate box extraction algorithm for texture-less object based on region orientation compression. This algorithm is an improvement on the template matching algorithm OCM. The algorithm compresses the local area edge orientation and maintains a low computational complexity,the algorithm proposes new orientation compressing method and similarity measurement method. Experiments results show that compared with the OCM,the algorithm can improve the recall rate by 6.5%. When the recall rate is close,the algorithm reduce the amount of candidate boxes by 41.9%.

Keywords:texture-less object;object detection;template matching;object candidate box extraction;quantized and encoded orientation;binary gradient direction compression


参考文献:

[1] REDMON J,ANGELOVA A. Real-Time Grasp DetectionUsing Convolutional Neural Networks [J].Proceedings-IEEE International Conference on Robotics and Automation 2015,2014:1316-1322.

[2] DATTA R,JOSHI D,LI J,et al. Image Retrieval:Ideas,Influences,and Trends of the New Age [J].ACM Trans. on Computing Surveys,2008:40(2):5.

[3] HODAN T,DAMEN D,WALTERIO M,et al. EFFICIENT TEXTURE-LESS OBJECT DETECTION FOR AUGMENTED REALITY GUIDANCE [J].2015 IEEE International Symposium on Mixed and Augment Reality Workshops,2015:81-86.

[4] LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints [J].International Journal of Computer Vision,2004,60(2):91-110.

[5] TOMBARI F,FRANCHI A,DI L. BOLD Features to Detect Texture-less Objects [C]//2013 IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society,2013:1265-1272.

[6] CHAN J,LEE J A,KEMAO Q. BORDER:An Oriented Rectangles Approach to Texture-Less Object Recognition [C]//Computer Vision & Pattern Recognition. IEEE,2016:2855-2863.

[7] HSIAO E,HEBERT M. Gradient Networks:Explicit Shape Matching Without Extracting Edges [C]//AAAI’13:Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,2013:417-423.

[8] HINTERSTOISSER S,CAGNIART C,ILIC S,et al.Gradient Response Maps for Real-Time Detection of Texture-Less Objects [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,1(5):876-888.

[9] YU H,QIN H,PENG M. A Fast Approach to Texture-Less Object Detection Based on Orientation Compressing Map and Discriminative Regional Weight [J].Algorithms,2018,11(12):201.


作者简介:彭茂庭(1995-),男,汉族,湖南邵阳人,硕士研究生,研究方向:数字图像处理、机器视觉。