摘 要:近十年来,深度学习由于其优越的性能,已经逐渐应用于各个领域。在目标跟踪领域,基于深度学习的方法也取得了巨大的成功。文章主要介绍基于深度学习的目标跟踪算法研究现状及发展趋势。首先,介绍了视觉目标跟踪传统算法。然后,对基于深度学习的目标跟踪算法进行分类,并进行问题分析。最后,对基于深度学习的目标跟踪算法的发展趋势进行预测。
关键词:目标跟踪;深度学习;孪生网络;相关滤波
DOI:10.19850/j.cnki.2096-4706.2021.08.024
中图分类号:TP391.41 文献标识码:A 文章编号:2096-4706(2021)08-0082-04
Research Status and Development Trend of Target Tracking Algorithm Based on Deep Learning
ZHANG Yingjie
(Zhanjiang University of Science and Technology,Zhanjiang 524094,China)
Abstract:In recent ten years,deep learning has been gradually applied in various fields because of its superior performance. In the field of target tracking,the method based on deep learning has also achieved great success. This paper mainly introduces the research status and development trend of target tracking algorithm based on deep learning. Firstly,the traditional algorithms for visual target tracking are introduced. Then,the target tracking algorithms based on deep learning are classified and the problems are analyzed. Finally, the development trend of target tracking algorithm based on deep learning is predicted.
Keywords:target tracking;deep learning;siamese network;correlation filtering
参考文献:
[1] 吴大伟 . 智慧交通中形变自适应的目标跟踪算法研究 [J]. 山西建筑,2020,46(6):196-198.
[2] 周俊静,段建民,杨光祖 . 基于改进的确定性目标关联的 车辆跟踪方法 [J]. 模式识别与人工智能,2014,27(1):89-95.
[3] 吕梅柏,赵小锋,刘广哲 . 空中大机动目标跟踪算法研究 [J]. 现代防御技术,2018,46(2):45-50+172.
[4] 吕福友 . 家用智能视频中运动目标的检测与跟踪 [J]. 通讯 世界,2019,26(1):180-181.
[5] 陈汐,韩译锋,闫云凤,等 . 目标物智能跟踪与分割融 合算法及其在变电站视频监控中的应用 [J]. 中国电机工程学报, 2020,40(23):7578-7587.
[6] SUN D Q,ROTH S,BLACK M J. Secrets of optical flow estimation and their principles [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE,2010:2432-2439.
[7] NUMMIARO K,KOLLER-MEIER E,GOOL L V. An adaptive color-based particle filter [J].Image and Vision Computing, 2003,21(1):99-110.
[8] COMANICIU D,MEER P. Mean shift:A robust approach toward feature space analysis [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
[9] MA C,HUANG J B,YANG X K,et al. Hierarchical convolutional features for visual tracking [C]//2015 IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE,2015: 3074-3082.
[10] HE R,WU X,SUN Z N,et al. Wasserstein CNN:Learning Invariant Features for NIR-VIS Face Recognition [J].IEEE transactions on pattern analysis and machine intelligence,2019,41(7):1761-1773.
[11] FU K,ZHAO Q J,GU I Y H. Refinet:A deep segmentation assisted refinement network for salient object detection [J].IEEE Transactions on Multimedia,2019,21(2):457-469.
[12] DANELLJAN M,HÄGER G,KHAN F S,et al. Convolutional features for correlation filter based visual tracking [C]//2015 IEEE International Conference on Computer Vision Workshop (ICCVW).Santiago:IEEE,2015:621-629.
[13] DANELLJAN M,ROBINSON A,KHAN F S,et al. Beyond correlation filters:Learning continuous convolution operators for visual tracking [C]//European Conference on Computer Vision (ECCV).Amsterdam:Springer,2016:472-488.
[14] BERTINETTO L,VALMADRE J,HENRIQUES J F,et al. Fully-Convolutional Siamese networks for object tracking [C]//European Conference on Computer Vision.Amsterdam:Springer,2016:850-865.
[15] TAO R,GAVVES E,SMEULDERS,A W M. Siamese instance search for tracking [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE,2016: 1420-1429.
[16] BOLME D S,BEVERIDGE J R,DRAPER B A,et al. Visual object tracking using adaptive correlation filters [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE,2010:2544-2550.
[17] HENRIQUES J F,CASEIRO R,MARTINS P,et al. Exploiting the circulant structure of tracking-by-detection with kernels [C]//European Conference on Computer Vision.Florence:Springer, 2012:702-715.
[18] DANELLJAN M,KHAN F S,FELSBERG M,et al. Adaptive color attributes for real-time visual tracking [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus: IEEE,2014:1090-1097.
[19] DANELLJAN M,HÄGER G,KHAN F S,et al. Accurate scale estimation for robust visual tracking [C]//British Machine Vision Conference 2014.Nottingham:BMVA Press,2014:1-11.
[20] HENRIQUES J F,CASEIROR,MARTINS P,et al. Highspeed tracking with kernelized correlation filters [J].IEEE transactions on pattern analysis and machine intelligence,2015,37(3):583-596.
[21] ZHU G B,WANG J Q,WU Y,et al. MC HOG correlation tracking with saliency proposal [C]//Thirtieth AAAI Conference on Artificial Intelligence.Phoenix:AAAI Press,2016:3690–3696.
[22] GUO Q,FENG W,ZHOU C,et al. Learning dynamic Siamese network for visual object tracking [C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:1781-1789.
[23] HE A F,LUO C,TIAN X M,et al. A twofold Siamese network for real-time object tracking [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018:4834-4843.
[24] LI B,YAN J J,WU W,et al. High performance visual tracking with Siamese region proposal network [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8971-8980.
[25] ZHU Z,WANG Q,LI B,et al. Distractor-aware Siamese networks for visual object tracking [C]//European Conference on Computer Vision.Munich:Springer,2018:103-119.
[26] LI B,WU W,WANG Q,et al. SiamRPN plus plus: Evolution of Siamese visual tracking with very deep networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019:4277-4286.
[27] WU Y,LIM J,YANG M H. Object tracking benchmark [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1834-1848.
[28] GALOOGAHI H K,FAGG A,HUANG C,et al. Need for speed:A benchmark for higherframe rate object tracking [C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice: IEEE,2017:1134-1143.
[29] LIANG P P,BLASCH E,LING H B. Encoding color information for visual tracking:Algorithms and benchmark [J].IEEE Transactions on Image Processing,2015,24(12):5630-5644.
[30] MUELLER M,SMITH N,GHANEM B. A benchmark and simulator for UAV Tracking [C]//European Conference on Computer Vision.Amsterdam:Springer,2016:445-461.
[31] FAN H,LIN L T,YANG F,et al. LaSOT:A high-quality benchmark for large-scale single object tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach:IEEE,2019:5369-5378.
[32] MÜELLER M,BIBI A,GIANCOLA S,e t a l . TrackingNet:A large-scale dataset and benchmark for object tracking in the wild [C]//European Conference on Computer Vision.Munich: Springer,2018:310-327.
[33] HUANG L H,ZHAO X,HUANG K Q. GOT-10k:A large high-diversity benchmark for generic object tracking in the wild [J/OL].arXiv:1810.11981 [cs.CV].(2018-10-29).https://arxiv.org/ abs/1810.11981v3.
[34] DANELLJAN M,GOOL L V,TIMOFTE R. Probabilistic regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE, 2020:7181-7190.
[35] BHAT G,DANELLJAN M,GOOL L V,et al. Learning discriminative model prediction for tracking [C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul:IEEE, 2019:6181-6190.
[36] DANELLJAN M,BHAT G,KHAN F S,et al. ATOM: Accurate tracking by overlap maximization [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach:IEEE,2019:4655-4664.
[37] CHEN Z D,ZHONG B N,LI G R,et al. Siamese box adaptive network for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE, 2020:6667-6676.
[38] GUO D Y,WANG J,CUI Y,et al. SiamCAR:Siamese fully convolutional classification and regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE,2020:6268-6276.
作者简介:张莹杰(1992—),女,汉族,河南商丘人,助教, 硕士研究生,研究方向:智能算法。