摘 要:针对马太效应中过度流行性偏见问题,通过定义新的节点权重来初始化项目资源值,达到降低项目流行性的目的;进一步考虑用户可信度因素,结合统计学中的 3σ 原则,根据数据统计量筛选出系统中存在的异常用户或欺诈用户。在此基础上给出一个新的推荐算法(UTMT)。在数据集 MovieLens_100K 上对算法进行试验,并与资源分配中的热传导算法作比较,结果表明,构建的 UTMT 推荐算法预测结果的准确率较之热传导算法有较大的提升。
关键词:二分图;马太效应;用户可信度;资源分配;推荐算法
DOI:10.19850/j.cnki.2096-4706.2021.08.036
中图分类号:TP391.3 文献标识码:A 文章编号:2096-4706(2021)08-0127-03
Research on Recommendation Algorithm Based on Resource Allocation
CHI Luyang
(College of Sciences,Northeastern University,Shenyang 110004,China)
Abstract:Aiming at the problem of excessive popularity bias in Matthew effect,a new node weight is defined to initialize the project resource value,so as to achieve the aim of reducing the project popularity. Further considering the user credibility factor and combining with the 3σ principle of statistics,the abnormal users or fraudulent users existing in the system are filtered out according to the data statistics. On this basis,a new recommendation algorithm(UTMT)is proposed. Test the algorithm on the dataset MovieLens_100k and make a comparison with heat conduction algorithm in resource allocation. The final results show that the constructed recommendation algorithm UTMT has a big improvement in the accuracy rate of predict outcomes than that of the heat conduction algorithm.
Keywords:bipartite graph;Matthew effect;user credibility;resource allocation;recommendation algorithm
参考文献:
[1] ZHU J Q,LU L,MA C M. From Interest to Location: Neighbor-Based Friend Recommendation in Social Media [J].Journal of Computer Science and Technolog,2015(30):1188-1200.
[2] ZHANG W,DU Y,SONG W. Followee Recommendation Based Formal Concept Analysis In Social Network [J].International journal of innovative computing,information & control:IJICIC, 2015,11(4):1155-1164.
[3] ZHOU T,REN J,MEDO M. Bipartite network projection and personal recommendation [J].Physical Review E,2007,76(4):046115.
[4] NEWMAN M E. The structure of scientific collaboration networks [J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(2):404-409.
[5] ZHOU T,REN J,MEDO M,et al. How to project a bipartite network? [J/OL].arXiv:0707.0540v2[physics.soc-ph].(2007- 07-31).https://arxiv.org/abs/0707.0540v2.
[6] 郝治翰,陈阳,王蒲生 .“马太效应”与科研网络中的择 优依附 [J]. 自然辩证法研究,2019,35(11):39-45.
[7] LÜ L Y,MEDO M,YEUNG C H,et al. Recommender systems [J].Physics Reports,2012,519(1):1-49.
[8] ZHANG Y C,BLATTNER M,YU Y K. Heat conduction process on community networks as a recommendation model [J].Physical Review Letters,2007,99(15):154301.
作者简介:迟露阳(1996—),女,蒙古族,内蒙古赤峰人, 硕士研究生,研究方向:推荐系统、数据分析。