当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术21年10期

微格教室视频辅助系统设计
何山
(成都锦城学院,四川 成都 611731)

摘  要:微格教室专门用于教师的微格教学。微格教室中视频技术的辅助应用设计,主要包括两个方面:其一是采用视频跟随技术锁定老师在画面中的位置,进而实时调整摄像头跟踪拍摄老师授课;其二是利用人工智能技术分析教师的授课表情。借助视频处理技术,可在微格教室录制并分析教师的教学情况,便于后续回溯和分析,对提高教师的授课技能和水平有重要意义。


关键词:目标检测;目标跟踪;表情识别;人工智能



DOI:10.19850/j.cnki.2096-4706.2021.10.021


中图分类号:TP391.4                                       文献标识码:A                                  文章编号:2096-4706(2021)10-0084-04


Design of Video Aided System for Micro-classroom

HE Shan

(Chengdu Jincheng College,Chengdu 611731,China)

Abstract:Micro-classroom is specially used for microteaching of teachers. The auxiliary application design of video technology in micro-classroom mainly includes two aspects:one is to use video following technology to lock the teacher’s position in the picture,and then adjust the camera to track and shoot the teacher’s teaching in real time;the second is to use artificial intelligence technology to analyze teachers’teaching expression. With the help of video processing technology,teachers’teaching can be recorded and analyzed in microclassroom,which is convenient for follow-up tracing and analysis,and is of great significance to improve teachers’teaching skill and level.

Keywords:object detection;object tracking;expression recognition;artificial intelligence


参考文献:

[1] REDMON J,FARHADI A. YOLOv3:An Incremental Improvement [J/OL].arXiv:1804.02767 [cs.CV].(2018-04-08).https:// arxiv.org/abs/1804.02767.

[2] VOJIR T,NOSKOVA J,JIRI M. Robust Scale-Adaptive Mean-Shift for Tracking [C]//8th Scandinavian Conference,SCIA 2013. Espoo:Springer,2013:652-663.

[3] TSALAKANIDOU F,MALASSIOTIS S. Real-time 2D+3D facial action and expression recognition [J].Pattern Recognition,2010, 43(5):1763-1775.

[4] SUNG J,KIM D. Pose-Robust Facial Expression Recognition Using View-Based 2D + 3D AAM [J].IEEE Transactions on Systems,Man,and Cybernetics,Part A:Systems and Humans,2008,38(4):852-866.

[5] 应自炉,唐京海,李景文,等 . 支持向量鉴别分析及在人 脸表情识别中的应用 [J]. 电子学报,2008(4):725-730.

[6] 付晓峰 . 基于二元模式的人脸识别与表情识别研究 [D]. 杭州:浙江大学,2008.

[7] SIMONYAN K,ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition [J/OL].arXiv:1409.1556 [cs.CV].(2014-09-04).https://arxiv.org/abs/1409.1556.

[8] SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the Inception Architecture for Computer Vision [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE,2016:2818-2826.

[9] HE K M,ZHANG X Y,REN S P,et al. Deep Residual Learning for Image Recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas: IEEE,2016:770-778.

[10] CHAN C W,PAELINCKX D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery [J]. Remote Sensing of Environment,2008.112(6):2999-3011.


作者简介:何山(1987—),女,汉族,四川成都人,教师, 硕士,研究方向:图像处理、嵌入式开发。