摘 要:信号活动规律预测是有效利用大量随机电磁频谱监测数据和提取有用信号信息的重点,也是难点。如何从大容量、低成本的数据中提取电磁信号的价值信息,提高频谱监测数据利用的有效性是预测信号活动规律的核心重点。本文首先简单介绍了当前频谱监测数据的统计方法,然后采用时间序列分析方法预测信号在未来时刻信号强度,同时对采用的统计方法进行了分析和仿真。
关键词:电磁信号;信号强度;活动规律;时间序列分析
DOI:10.19850/j.cnki.2096-4706.2021.17.019
中图分类号 :TP391.9 文献标识码:A 文章编号:2096-4706(2021)17-0078-04
Research on Signal Activity Law Prediction Based on Time Series Analysis
HE Guojin1,2 , WU Rongjun3
(1. China Research Institute of Radio-wave Propagation, Qingdao 266109, China; 2. School of Statisstics, Renmin University of China, Beijing 100872, China; 3.School of Mathematics, Southwest Minzu University, Chengdu 610041, China)
Abstract: The prediction of signal activity law is the key and difficult point to effectively use a large number of random electromagnetic spectrum monitoring data and extract useful signal information. How to extract the value information of electromagnetic signal from high-capacity and low-cost data and improve the effectiveness of spectrum monitoring data is the core focus of predicting the law of signal activity. Firstly, this paper briefly introduces the statistical methods of the current spectrum monitoring data, then uses the time series analysis method to predict the signal intensity of the signal in future moment, and analyzes and simulates the statistical methods used.
Keywords: electromagnetic signal; signal intensity; activity law; time series analysis
参考文献:
[1] 贾俊平 , 何晓群 , 金勇进 . 统计学 : 第 6 版 [M]. 北京:中国人民大学出版社,2015.
[2] 聂淑媛 . 时间序列分析的早期发展 [D]. 西安:西北大学,2012
[3] 胡西娟,褚万霞 . 大数据时代下抽样方法问题探讨 [J]. 经贸实践,2018,(13)
[4] 袁兴明 , 马鑫程 , 邢立鹏 , 等 .SDCORS 基准站运动趋势与高程方向周期性信号分析 [J]. 矿山测量,2018,46(1):99-104.
[5] MA P,MAHONEY M W,YU B. A statistical perspective on algorithmic leveraging [J].Journal of Machine Learning Research, 2015,16(1):861—911
作者简介:何国金(1981—),男,汉族,福建莆田人,中国人民大学统计学院高级研修班学员,高级工程师,本科,研究方向: 大数据应用、电磁态势;吴荣军(1982—),男,汉族,安徽宿州人, 讲师,博士,研究方向:信息与计算科学。