当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术21年20期

基于脉冲耦合神经网络分解模型的夜间图像增强研究
李春林,张兵,祖立卓,刘少杰
(宣化科技职业学院,河北 张家口 075100)

摘  要:脉冲耦合神经网络分解模型对于夜间光线复杂情况下的图像增强,容易出现严重的振铃现象。针对这一问题,文章对夜间图像增强进行了研究,通过指数变换对夜间图像进行预处理,结合脉冲耦合神经网络分解模型进行图像增强。实验结果表明,该方法可以实现对夜间图像的增强,增强后的图像细节清晰,整体光线较为柔和,图像对比度适中,降低了振铃现象造成的影响。


关键词:脉冲耦合神经网络;分解模型;图像增强



DOI:10.19850/j.cnki.2096-4706.2021.20.017



基金项目:2021 年省级支持市县科技创新和科学普及专项资金(202100037326)


中图分类号:TP18                                         文献标识码:A                                        文章编号:2096-4706(2021)20-0062-05


Research on Night Image Enhancement Based on Pulse Coupled Neural Network Decomposition Model

LI Chunlin, ZHANG Bing, ZU Lizhuo, LIU Shaojie

(Xuanhua Vocational College of Science & Technology, Zhangjiakou 075100, China)

Abstract: Pulse coupled neural network decomposition model is prone to serious ringing phenomenon for image enhancement under complex light at night. To solve this problem, this paper studies the night image enhancement, preprocesses the night image through exponential transformation, and enhances the image combined with pulse coupled neural network decomposition model. The experimental results show that the method can realize night image enhancement, the enhanced image’s details are clear, the overall light is soft, image contrast is moderate, which reduces the impact caused by ringing phenomenon.

Keywords: pulse coupled neural network; decomposition model; image enhancement


参考文献:

[1] 马义德,李廉,绽琨,等 . 脉冲耦合神经网络与数字图像处理技术 [M]. 北京:科学出版社,2008:10-26.

[2] KIM Y T. Contrast enhancement using brightness preserving bi-histogram equalization [J].IEEE Transactions on Consumer Electronics,1997,43(1):1-8.

[3] KIM T K,PAIK J K,Kang B S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering [J].IEEE Transactions on Consumer Electronics,1998,44(1):82-87.

[4] RAHMAN Z,JOBSON D J,WOODELL G A. Retinex processing for automatic image enhancement [J].Journal of Electronic Imaging,2004,13(1):100-110.

[5] XU G Z,ZHANG Z F,MA Y D. An image segmentation based method for iris feature extraction [J].Journal of China Universities of Posts and Telecommunications,2008,15(1):96-101+117. 

[6] Padgett M L,Johnson J L. Pulse-Coupled Neural Networks (PCNN)andwavelets:Biosensor applications [C]. Proceeding of International Conference on Neural Networks(ICNN97).Houston: IEEE,1997:2507–2512.

[7] Johnson J L,Padgett M L.PCNN models and applications [J]. IEEE Transactions on Neural Networks,1999,10(3):480-498.[8] Johnson J L.Pulse-coupled neural nets:translation,

rotation,scale,distortion,and intensity signal invariance for images [J].Applied Optics,1994, 33(26):6239-6253.

[9] Lindblad T,Kinser J M. Image Processing Using Pulse Coupled Neural Networks(2nd) [M].Berlin:Springer,2005:1-9.

[10] 李春林 . 基于脉冲神经网络的图像特征提取与应用研究[D]. 宜昌:三峡大学,2013.

[11] Eckhorn R,Reitboeck H J,Arndt M,et al. Feature Linking via Synchronization among Distributed Assemblies:Simulations of Results from Cat Visual Cortex [J].Neural Computation,1990,2(3):293-307.

[12] Johnson J L,Padgett M L,Friday W A. Multiscale image factorization [C]//Proceedings of International Conference on Neural Networks (ICNN’97).1997,3:1465-1468.


作者简介:李春林(1985.03—),女,汉族,河北张家口人,中级,硕士研究生,研究方向:数字图像处理,人工智能