当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术21年20期

基于 DBN-PID 模型的舰船运动姿态短期预测及仿真
迟鑫鹏,郑旺辉
(北京机械设备研究所,北京 100854)

摘  要:舰船在海浪中航行受到海浪、海风等环境因素干扰,不可避免地产生摇摆,给舰船的海上航行造成很大的安全隐患。舰船航行过程中,运动姿态会受到耦合作用、不定周期等诸多因素的干扰,因此很难精确地预测舰船的短期运动姿态。文章提出一种新的预测方法,将机器学习 DBN 网络与 PID 网络相互结合,建立 DBN-PID 模型对舰船的姿态变化进行短期预测。模型有效地解决了舰船运动姿态预测时间短、误差大的问题,具有良好的工程应用价值。


关键词:舰船运动;非线性;短期预测



DOI:10.19850/j.cnki.2096-4706.2021.20.019


中图分类号:TP183                                      文献标识码:A                                     文章编号:2096-4706(2021)20-0071-07


Short-term Prediction and Simulation of Ship Motion Attitude Based on DBN-PID Model

CHI Xinpeng, ZHENG Wanghui

(Beijing Institute of Machinery Equipmenth, Beijing 100854, China)

Abstract: Ship navigation in the waves is disturbed by the waves, sea breeze and other environmental factors, inevitably swaying, causing great security risks to the ship navigation. In the process of ship navigation, the motion attitude will be disturbed by many factors, such as coupling effect, indefinite period and so on. Therefore, it is difficult to accurately predict the short-term motion attitude of a ship. In this paper, a new prediction method is proposed, which combines machine learning DBN network with PID network to establish DBNPID model for short-term prediction of ship attitude changes. The model effectively solve the problems of short time and large error of ship motion attitude prediction, and has good engineering application value.

Keywords: ship motion; nonlinearityl; short term forecast


参考文献:

[1] 朱娟,张立凤,张铭 . 检验全球数值预报模式的相似度等指标 [J]. 气象科学,2018,38(2):221-228.

[2] MA N,YU L W,GU X C. On the Effect of Time-varying Ship Forward Speed on Parametric Roll Occurrence from View Point of Operational Safety [C]//5th International Maritime Conference on DESIGN FOR SAFETY and 4th Workshop on RISK-BASED APPROACHES IN THE MARINE INDUSTRIES. Shanghai:[s.n.],2013.

[3] 徐路 . 基于 GA-BP 神经网络的热带果树种植适宜度分析[D]. 南宁:广西大学,2018.

[4] NING M,ZAHEERUDDIN M. Neural Network Model-Based Adaptive Control of a VAV-HVAC&R System [J].International Journal of 2021.10 77第 20 期Air-Conditioning and Refrigeration,2019,27(1):1-16.

[5] KARRA K,KUZDEBA S,PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]//2017 IEEE International Symposium on Dynamic  Spectrum Access Networks (DySPAN).Baltimore:IEEE,2017:1-3.

[6] NOORI R,ABBASI M R,Adamowski J F,et al. A simple mathematical model to predict sea surface temperature over the northwest Indian Ocean [J].Estuarine,Coastal and Shelf Science,2017,197:236-243.

[7] UTTAM B S,KRISHNA P S,ANJANA D,et al. Potential impact of climate change on the distribution of six invasive alien plants in Nepal [J].Ecological Indicators,2018(95):99-107.

[8] BAZZICHETTO M,MALAVASI M,BARTAK V,et al. Plant invasion risk:A quest for invasive species distribution modelling in managing protectedareas [J].Ecological Indicators,2018(95):311-319.

[9] 黄海亮,靳双龙,王式功,等 . 相似预报方法在山西省云量预报中的应用 [J]. 干旱气象,2018,36(5):845-851.

[10] 刘可新,梁犁丽,李匡,等 . 基于雨量测站应急机制的洪水预报方法 [J]. 水利水电技术,2018,49(8):87-93.

[11] KONSTANTINA A,ANGELA G,EFTERPI K,et al.Pleistocene marine fish invasions and paleoenvironmental reconstructions in the eastern Mediterranean [J].Quaternary Science Reviews,2018 (196):80-99.

[12] ORFINGER A B,GOODDING D D. The Global Invasion of the Suckermouth Armored Catfish Genus Pterygoplichthys(Siluriformes: Loricariidae):Annotated List of Species,Distributional Summary, and Assessment of Impacts [J/OL].Zoological Studies,2018,57(7):

1-16.[2021-07-23].http://zoolstud.sinica.edu.tw/Journals/57/57-07.pdf.

[13] NOORI R,ABBASI M R,ADAMOWSKI J F,et al.A simple mathematical model to predict sea surface temperature over northwest Indian Ocean [J].Estuarine,Coastal and Shelf Science,2017,(197):236-243.

[14] SO R,TEAKLES A,BAIK J. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada’s Regional Air Quality Deterministic Prediction System [J].Journal of the Air & Waste Management Association,2018,68(5):446-462.

[15] SHARIFIAN A,GHADI M J,GHAVIDEL S,et al. A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data [J].Renewable Energy,2018(120):220-230.

[16] XU R,SUGIYAMA A,HASEGAWA K, et al. Remote Transparent Visualization of Surface-Volume Fused Data toSupport Network-Based Laparoscopic Surgery Simulation [C]//Innovation in Medicine and Healthcare2015.Kyoto:Springer International Publishing,2016:345-352.

[17] 肖涵 . 干旱致灾临界状态辨识及汉江上游未来气候情景下干旱预测研究 [D]. 武汉:华中科技大学,2019.

[18] 王秀娟 . 基于人工神经网络的保护区气温变化预测研究[D]. 长春:吉林农业大学,2019.


作者简介:迟鑫鹏(1997.12—),男,汉族,黑龙江肇东人,硕士在读,主要研究方向:发射系统仿真;郑旺辉(1966.03—),男,汉族,湖北崇阳人,研究员,工学硕士,主要研究方向:导弹发射技术与设备。