当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术21年22期

对抗样本生成及防御方法综述
刘海燕,吕涵
(中国人民解放军陆军装甲兵学院,北京 100071)

摘  要:随着人工智能的不断发展,机器学习在多个领域中取得了很好的应用效果。然而对抗样本的出现对机器学习模型的安全性造成了不容忽视的威胁,导致了机器学习模型的分类准确性降低。文章简述了对抗样本的起源、概念以及不同的对抗攻击方式,研究了典型的对抗样本生成方法以及防御方法,并在此基础上,展望了关于对抗攻击和对抗攻击防御的未来发展趋势。


关键词:机器学习;对抗样本;神经网络;对抗攻击



DOI:10.19850/j.cnki.2096-4706.2021.22.024


中图分类号:TP18                                          文献标识码:A                               文章编号:2096-4706(2021)22-0082-04


Overview on Adversarial Sample Generation and Defense Methods

LIU Haiyan, LYU Han

(The Army Armored Military Academy of PLA, Beijing 100071, China)

Abstract: With the continuous development of artificial intelligence, machine learning has achieved good application effects in many fields. However, the emergence of adversarial samples poses a serious threat to the security of machine learning models and reduces the accuracy of machine learning model classification. This paper briefly describes the origin, concept and different adversarial attack methods of adversarial samples, studies typical adversarial sample generation methods and defense methods, and on this basis, puts forward the future development trend of adversarial attack and adversarial attack defense.

Keywords: machine learning; adversarial sample; neural network; adversarial attack


参考文献:

[1] SZEGEDY C,ZAREMBA W,SUTSKEVER I. Intriguing properties of neural networks [J/OL].arXiv:1312.6199 [cs.CV].(2013-12- 21).https://arxiv.org/abs/1312.6199.

[2] GOODFELLOW I J,SHLENS J,SZEGEDY C. Explaining and Harnessing Adversarial Examples [J/OL].arXiv:1412.6572 [stat.ML]. (2014-12-20).https://arxiv.org/abs/1412.6572v3.

[3] KURAKIN A,GOODFELLOW I,BENGIO S. Adversarial examples in the physical world [J/OL].arXiv:1607.02533 [cs.CV].(2016- 07-08).https://arxiv.org/abs/1607.02533v1.

[4] 刘会 , 赵波 , 郭嘉宝 , 等 . 针对深度学习的对抗攻击综述 [J]. 密码学报 , 2021, 8(2): 202-214.

[5] CARLINI N,WAGNER D. Towards Evaluating the Robustness of Neural Networks [J/OL].arXiv:1608.04644 [cs.CR].(2016-08-16). https://arxiv.org/abs/1608.04644.

[6] BRENDEL W,RAUBER J,BETHGE M. Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models [J/OL].arXiv:1712.04248 [stat.ML].(2017-12-12). https://arxiv.org/abs/1712.04248.


作者简介:刘海燕(1970—),女,汉族,北京人,教授,博士,研究方向:信息安全与对抗技术;吕涵(1993—),女,汉族, 江苏连云港人,硕士研究生,研究方向:信息安全与对抗技术。