当前位置>主页 > 期刊在线 > 计算机技术 >

计算机技术22年12期

数字孪生数值模拟平台实现数据中心节能降耗分析
郑品迪
(北京瑞思博创科技有限公司,北京 100036)

摘  要:随着国家“双碳”政策的推进,对于能源消耗大户数据中心,目标不仅是 PUE 限制,而是要切实减少能源消耗、减少碳排放,使用数据中心数字孪生技术可以辅助数据中心节能,文章讨论如何通过数字孪生数值模拟平台分析实现数据中心节能计算,并且在数字孪生模型中体现影响数据中心能耗的关键基础设施参数,结合实际测试经验与厂家数据,评估这些参数对数据中心数值模拟的影响,以数字孪生数值模拟实例和测试数据展示节能效果。分析结果表明,通过数字孪生技术辅助能耗分析都可以找到可优化点,实现数据中心节能减排的目的。


关键词:双碳数据中心;数值模拟;节能减排;PUE



DOI:10.19850/j.cnki.2096-4706.2022.012.020


中图分类号:TP391.9                                     文献标识码:A                                      文章编号:2096-4706(2022)12-0078-05


Analysis on the Implementation of Energy Saving and Consumption Reduction in Data Center by Digital Twin Numerical Simulation Platform

ZHENG Pindi

(Beijing Rainspur Technology Co., Ltd., Beijing 100036, China)

Abstract: With the promotion of the national policy of “double carbon”, for the data center with large energy consumption, the goal is not only to limit PUE, but to effectively reduce energy consumption and carbon emission. Using the data center digital twin technology can assist the data center in energy saving. This paper discusses how to realize the energy saving calculation of the data center through the digital twin numerical simulation platform analysis, and reflect the key infrastructure parameters affecting the energy consumption of the data center in the digital twin model. Combined with the actual test experience and manufacturer’s data, it evaluates the impact of these parameters on the numerical simulation of the data center, and shows the energy saving effect with the actual examples and test data of digital twin numerical simulation. The analysis results show that the optimization points can be found through energy consumption analysis assisted by the digital twin technology, so as to achieve the purpose of energy saving and emission reduction in the data center.

Keywords: double carbon data center; numerical simulation; energy saving and emission reduction; PUE 


参考文献:

[1] 中国电子节能技术协会 . 数据中心数字孪生技术规范:T/DZJN 47—2021 [S/OL].[2022-04-08]. https://maiimg.com/ pdf/d73831423705@pdf.

[2] SEYMOUR M,BANA M,WANG D. the performance indicator: assessing and visualizing data center cooling performance [J]. The Green Grid,2016,WHITE PAPER #68.

[3] 陈敏华 . 中央冷水主机变冷冻水温对系统节能的影响分析[J]. 建筑热能通风空调,2012,31(4):64-66.

[4] 侯士彦,钟景华.数据中心机房空调系统的PUE值计算 [J].电信技术,2013(9):49-51.

[5] HERRLIN K M. Rack Cooling Effectiveness in Data Centers and Telecom Central Offices:The Rack Cooling Index(RCI) [J]. ASHRAE Transactions,2005,11(2):725-731.

[6] ASHRAE.ASHRAE TC 9.9 2011 Thermal Guidelines for Data Processing Environments–Expanded Data Center Classes and Usage Guidance [EB/OL].[2022-04-07].https:// max.book118.com/html/2016/0320/38144517.shtm. 

[7] SHARMA R K,BASH C E,PATEL D C. Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-scale Data Centers [J/OL]. American Institute of Aeronautics and Astronautics,AIAA-2002-3091[2022-04-06].https://www.researchgate. 

net/publication/244391475_Dimensionless_Parameters_for_Evaluation_ of_Thermal_Design_and_Performance_of_Large-scale_Data_Centers. 

[8] HERRLIN M K. Airflow and cooling performance of data center:two performance metric [J].ASHRAE Transactions,2008, 114:182-187.


作者简介:郑品迪(1983.09—),男,满族,四川成都人,高级职称,硕士,研究方向:数据中心数值仿真。