摘 要:针对点云的三维模型识别方法缺乏局部空间特征,从而影响 3D 模型的类识别的问题,提出一种基于残差模块的卷积神经网络三维模型识别方法。通过引入残差模块,构建深层神经网络增强点云模型的局部信息,提高物体的识别精度。同时,采用了一种获取多尺度局部空间信息的策略,加快了模型的推理能力。实验证明,算法识别准确率达到了 91.5%,加快了模型的推理速度,可应用于对点云模型识别有实时性要求的场景,如:流水线上物体的检测等。
关键词:三维模型识别;卷积神经网络;实时性
DOI:10.19850/j.cnki.2096-4706.2023.07.024
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2023)07-0093-05
Method of 3D Point Cloud Model Recognition Based on Neural Network
WU Pengcheng, LI Hui, WANG Fengcong
(Shenyang University of Technology, Shenyang 110870, China)
Abstract: Aiming at the problem that the 3D model recognition method of point cloud lacks local spatial features, which affects the class recognition of 3D model, a convolution neural network 3D model recognition method based on residual module is proposed. By introducing the residual module, a deep neural network is constructed to enhance the local information of the point cloud model and improve the object recognition accuracy. At the same time, a strategy of acquiring multi-scale local spatial information is adopted to accelerate the reasoning ability of the model. The experimental results prove that the recognition accuracy of the algorithm reaches 91.5%, which speeds up the reasoning speed of the model. And it can be applied to scenes that require real-time point cloud model recognition, such as object detection on the pipeline.
Keywords: 3D model recognition; convolution neural network; real time
参考文献:
[1] SUN J,OVSJANIKOV M,GUIBAS L. A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion [J]. Computer Graphics Forum,2009,28(5):1383-1392.
[2] OSADA R,FUNKHOUSER T,CHAZELLE B,et al. Shape Distributions [J].ACM Transactions on Graphics,2002,21(4):807-832.
[3] SU H,MAJI S,KALOGERAKIS E,et al. Multi-View Convolutional Neural Networks for 3D Shape Recognition [J/OL].arXiv: 1505.00880 [cs.CV].(2015-05-05).https://arxiv.org/abs/1505.00880.
[4] FENG Y F,ZHANG Z Z,ZHAO X B,et al. GVCNN:
Group-View Convolutional Neural Networks for 3D Shape Recognition [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake:IEEE,2018:264-272.
[5] MATURANA D,SCHERER S. VoxNet:A 3D Convolutional Neural Network for Real-Time Object Recognition [C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Hamburg:IEEE,2015:922-928.
[6] 杨军,王亦民.基于深度卷积神经网络的三维模型识别 [J].重庆邮电大学学报:自然科学版,2019,31(2):253-260.
[7] 杨军,王顺,周鹏 . 基于深度体素卷积神经网络的三维模型识别分类 [J]. 光学学报,2019,39(4):314-324.
[8] KLOKOV R,LEMPITSKY V. Escape from Cells:Deep Kd-Networks for the Recognition of 3D Point Cloud Models [C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice: IEEE,2017:863-872.
[9] BRONSTEIN M M,BRUNA J,LECUN Y,et al. Geometric Deep Learning:Going beyond Euclidean Data [J].IEEE Signal Processing Magazine,2017,34(4):18-42.
[10] WANG Y,SUN Y B,LIU Z W,et al. Dynamic graph CNN for learning on Point Clouds [J/OL].arXiv:1801.07829 [cs.CV].(2018-01-24).https://arxiv.org/abs/1801.07829.
[11] ZHANG K G,HAO M,WANG J,et al. Linked Dynamic Graph CNN:Learning on Point Cloud Via Linking Hierarchical Features [J/OL].arXiv:1904.10014 [cs.CV].(2019-04-22).https://arxiv. org/abs/1904.10014.
[12] CHEN C,FRAGONARA L Z,TSOURDOS A. GAPNet: Graph Attention Based Point Neural Network for Exploiting Local Feature of Point Cloud [J/OL].arXiv:1905.08705 [cs.CV].(2019-05-21).https://arxiv.org/abs/1905.08705.
[13] LIU X H,HAN Z Z,LIU Y-S,et al. Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an AttentionBased Sequence to Sequence Network [J/OL].arXiv:1811.02565 [cs.CV]. (2019-05-21).https://arxiv.org/abs/1811.02565v2.
[14] LI Y Y,BU R,SUN M C,et al. PointCNN:Convolution on X-Transformed Points [C]//Neural Information Processing Systems. Montréal:Curran Associates,2018:820-830.
[15] XU Y F,FAN T Q,XU M Y,et al. SpiderCNN:Deep Learning on Point Sets with Parameterized Convolutional Filters [J/ OL].arXiv:1803.11527 [cs.CV].(2018-03-30).https://arxiv.org/ abs/1803.11527v3.
[16] ATZMON M,MARON H,LIPMAN Y. Point Convolutional Neural Networks by Extension Operators [J].ACM Transactions on Graphics (TOG),2018,37(4):1-12.
[17] QI C R,SU H,KAICHUN M,et al. PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu:IEEE,2017:77-85.
[18] QI C R,YI L,SU H,et al. PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space [J/OL].arXiv:1706.02413 [cs.CV].(2017-06-07).https://arxiv.org/abs/1706.02413.
[19] KLOKOV R,LEMPITSKY V. Escape from Cells:Deep Kd-Networks for the Recognition of 3D Point Cloud Models [C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice: IEEE,2017:863-872.
[20] WU Z R,SONG S R,KHOSLA A,et al. 3D ShapeNets: A Deep Representation for Volumetric Shapes [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston:IEEE,2015:1912-1920.
作者简介:吴鹏程(1994.11—),男,汉族,四川广安人,硕士研究生在读,研究方向:基于点云模型的识别方法研究;李晖(1968.09—),女,汉族,山东蓬莱人,教授,博士,研究方向:网络通信与信号处理、信息安全、自然语言处理;王凤聪(1997.02—),男,汉族,山东聊城人,硕士研究生在读,研究方向:基于图像的目标检测方法研究。