摘 要:在无线传感器网络中,最关键的是获取传感器上的数据节点位置。目前最常用的获取数据节点位置的方法是自我组织映射传感器节点位置估算法。这种方法利用少量的锚节点,在不使用测距设备的情况下,精确地估算出节点位置,并且在预测范围内存在障碍物的混合环境下,估算位置的精度较过去的测距和定位方法也有所提高。但在混合环境下利用这种方法估算节点位置仍不够理想,并且还存在传感器节点间通信量增大时电力不足的问题。为了解决以上问题,本文提出以云计算为前提的汇集型自我组织定位节点估算方法,首先通过汇集各传感节点的邻节点信息,提高确认未知节点的精度,其次即使因各节点间交换位置信息而增加通信次数,也能降低感应节点的电力消耗。
关键词:云计算;无线传感器网络;高精度同步;节点
中图分类号:TP368;TN929.5 文献标识码:A 文章编号:2096-4706(2019)03-0057-03
Improvement of Location Estimation Method in Wireless Sensor Networks under Mixed Environment
LI Yilin,MENG Shiyao
(College of Computer Science and Engineering,The City College of Jilin Jianzhu University,Changchun 130114,China)
Abstract:In wireless sensor networks,the key problem is how to get the location of data nodes on sensors. At present,the most commonly used method to obtain the location of data nodes is self-organizing mapping sensor node location estimation method. This method uses a small number of anchor nodes to accurately estimate the location of nodes without using ranging equipment. In the mixed environment where obstacles exist in the range of prediction,the accuracy of the location estimation is higher than that of the previous ranging and positioning methods. However,it is not ideal to use this method to estimate the location of sensor nodes in mixed environment,and there is also the problem of insufficient power when the traffic between sensor nodes increases. In order to solve the above problems,this paper proposes a centralized self-organizing localization node estimation method based on cloud computing. Firstly, the accuracy of identifying unknown nodes is improved by collecting the neighboring node information of each sensor node. Secondly, the power consumption of the induction nodes can be reduced even if the number of communications is increased due to the exchange of location information among the nodes.
Keywords:cloud computing;wireless sensor networks;high-precision synchronization;nodes
参考文献:
[1] 秦绍华. 无线传感器网络多信道通信技术的研究 [D]. 济南:山东大学,2014.
[2] 陈羽. 广域行波测距算法及其形式化验证 [D]. 上海:上海交通大学,2013.
[3] 孙顺远. 无线传感器网络定位算法及应用研究 [D]. 无锡:江南大学,2014.
[4] 罗勃. 基于UWB 技术的TDOA 定位算法的研究与实现 [D]. 海口:海南大学,2017.
[5] 杨玲玲.IR-UWB 无线传感器网络精确TOA 测距定位研究 [D]. 太原:太原理工大学,2011.
[6] 刘菁原. 无线传感网中距离相关加权定位算法分析研究 [D]. 昆明:昆明理工大学,2016.
[7] 李亚杰. 基于DV-Hop 的无线传感器网络定位算法研究 [D]. 赣州:江西理工大学,2017.
[8] 寇磊. 基于SOM 算法改进的K-medoids 算法及其研究 [D]. 太原:太原理工大学,2017.
[9] 石勇. 面向云计算的可信虚拟环境关键技术研究 [D]. 北京:北京交通大学,2017.
作者简介:李依霖(1981-),女,汉族,辽宁辽阳人,讲师, 硕士,主要研究方向:智能控制、网络教育。