当前位置>主页 > 期刊在线 > 物联网 >

物联网2020年5期

​基于突变点检测的智能空间行为识别方法
臧媛媛¹ ,王守信¹ ,佟梦竹² ,王建兴³
(1. 航天神舟智慧系统技术有限公司,北京 100029;2. 北京交通大学,北京 100044;3. 中国航空油料集团有限公司,北京 100088)

摘  要:基于非嵌入式传感器数据的行为识别对家居设备控制、异常行为监测非常重要,是智能空间环境下行为识别的研究热点,不仅利于隐私保护而且能长期积累数据满足个体行为偏好。针对传感器数据序列中行为边界标识,并依次改善在线行为识别效果的问题,基于行为突变点检测思想识别连续行为的相似度程度,使用 KL 散度实现突变点检测,针对突变点检测阈值的选择问题,使用遗传算法对其进行自动设置。使用 RF、QSVM、加权 K 近邻(Weighted KNN,wKNN)、DT 算法实验验证突变点时域特征能够有效提高在线行为识别能力,证明了本文方法的有效性。


关键词:智能空间;非侵入式传感器;在线行为识别;突变点检测;阈值自动设置



中图分类号:TP391.4         文献标识码:A         文章编号:2096-4706(2020)05-0147-05


Intelligent Spatial Behavior Recognition Method Based on Mutation Detection

ZANG Yuanyuan1,WANG Shouxin1,TONG Meizhu2,WANG Jianxing3

(1.Aerospace ShenZhou Smart System Technology Co.,Ltd.,Beijing 100029,China; 2.Beijing Jiaotong University Beijing 100029,China;3.China National Aviation Fuel Group Limited Beijing 100088,China)

Abstract:Behavior recognition based on non embedded sensor data is very important for home equipment control and abnormal behavior monitoring. It is a research hotspot of behavior recognition in intelligent space environment. It is not only conducive to privacy protection but also can accumulate data for a long time to meet individual behavior preferences. Aiming at the problem of identifying behavior boundary in sensor data sequence and improving the effect of online behavior recognition in turn,based on the idea of behavior mutation detection to identify the similarity degree of continuous behavior,KL diver-gence is used to realize mutation detection,and genetic algorithm is used to automatically set the threshold of mutation detection. Using RF,QSVM,weighted KNN (wKNN)and DT algorithm to verify the time-domain feature of mutation point can effectively improve the ability of online behavior recognition,which proves the effectiveness of this method.

Keywords:smart home;non-invasive sensor;online activity recognition;change point detection;threshold automation


参考文献:

[1] ALAM MR,REAZ MBI,ALI MAM. A Review of Smart Homes-Past,Present,and Future [J]. Systems,Man,and Cybernetics,Part C:Applications and Reviews,IEEE Transactions on,2012,42(6):1190-1203.

[2] FINDEISEN M,MEINEL L,RICHTER J,et al. An omnidirectional stereo sen-sor for human behavior analysis in complex indoor environments [C].2015 IEEE International Conference on Consumer Electronics (ICCE),Las Vegas,NV,USA,2015:17-19.

[3] GEORGE D,BRIAN K. H,MARJORIE S,et al. Senior residents’ perceived need of and preferences for “smart home”sensor technologies [J]. Interna-tional Journal of Technology Assessment in Health Care,2008,24(1):120-124.

[4] CHO M,KIM Y,LEE Y H. Contextual Relationship-based Activity Segmenta-tion on an Event Stream in the IoT Environment with Multi-user Activities [C]. Proceedings of the 3rd Workshop on Middleware for Context-Aware Applications in the IoTDecember,2016:7-12.

[5] AMINIKHANGHAHI S,COOK D J. Using Change Point Detection to Automate Daily Activity Segmentation [C].13th Workshop on Context and Activity Modeling and Recognition. IEEE,2017.

[6] KRISHNAN N C,COOK D J. Activity recognition on streaming sensor data [J]. Pervasive and Mobile Computing,2014(10)Part B:138-154.

[7] ZHANG Q,KARUNANITHI M,BRADFORD D,et al. Activity of Daily Living as-sessment through wireless sensor data [C].Engineering in Medicine and Biology Society (EMBC),2014 36th Annual International Conference of the IEEE. S.l.:s.n.,2014:1752-1755.

[8] YATBAZ H Y,ERASLAN S,YESILADA Y,et al. Activity Recognition Using Binary Sensors for Elderly People Living Alone:Scanpath Trend Analysis Ap-proach [J].IEEE Sensors Journa,2019,19(17):7575-7582.

[9] HONDA Y,YAMAGUCHI H,HIGASHINO T. Daily Activity Recognition based on Markov Logic Network for Elderly Monitoring [C].2019 16th IEEE Annual Consumer Communications & Networking Conference(CCNC),Las Vegas,NV,USA,2019:1-6.

[10] MINOR B,COOK D J. Regression tree classification for activity predic-tion in smarthomes [C].2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing,New York,USA ,2014:441-450.

[11] RAEISZADEH M,TAHAYORI H. A novel method for detecting and predicting resident’s behavior in smart home [C].IEEE 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems(CFIS),Kerman,2018:71-74.


作者简介:臧媛媛(1986-),女,汉族,山东烟台人,工程师,硕士,研究方向:物联网技术及应用、人工智能技术应用。