摘 要:随着互联网、云计算、大数据等技术的快速发展和改进,医院已经引入了许多的信息化系统,覆盖了门诊挂号、诊断治疗、住院用药等领域,提高了医院信息化和共享化水平。但是,大数据时代,医院网络也面临着许多木马、病毒和黑客攻击等危险,因此文章构建了一个全方位纵深防御架构,该架构可以集成蜜罐技术和深度学习技术,进一步提高网络安全防御的主动性,大幅度提高网络安全防御能力。
关键词:蜜罐技术;深度学习;网络安全;防御架构
中图分类号:TP309 文献标识码:A 文章编号:2096-4706(2020)06-0161-03
Research and Design of Hospital Network Security Defense Architecture in the Era of Big Data
ZENG Yunqiang
(Foshan Hospital of TCM,Foshan 528000,China)
Abstract:With the rapid development and improvement of internet,cloud computing,big data and other technologies,the hospital has introduced many information systems,covering outpatient registration,diagnosis and treatment,inpatient medication and other fields,improving the level of hospital information and sharing. However,in the era of big data,the hospital network is also faced with many dangerous factors such as Trojans,viruses and hacker attacks. Therefore,this paper constructs a comprehensive defense in depth architecture,which can integrate honeypot technology and deep learning technology,further improve the initiative of network security defense,and greatly improve the network security defense ability.
Keywords:honeypot technology;deep learning;network security;defense architecture
参考文献:
[1] 朱斐,吴文,伏玉琛,等 . 基于双深度网络的安全深度强化学习方法 [J]. 计算机学报,2019,42(8):1812-1826.
[2] 赵胜勇 . 云计算技术下的网络安全防御技术 [J]. 电子技术与软件工程,2018(2):203-203.
[3] 刘雷,董超 . 大数据时代背景下计算机网络安全防范应用与运行 [J]. 网络安全技术与应用,2019(6):51-53.
[4] 罗冬梅 . 基于大数据时代的网络安全防范对策探析 [J]. 数字技术与应用,2019(4):202-202.
作者简介:曾运强(1982.06-),男,汉族,广东兴宁人,高级网络规划设计师,本科,研究方向:网络规划、网络安全设计。