当前位置>主页 > 期刊在线 > 信息化应用 >

信息化应用2021年1期

基于CiteSpace 可视化分析的材料信息学研究进展和趋势
赵晓慧
(西安科技大学 图书馆,陕西 西安 710054)

摘  要:材料信息学是实现新材料快速研发的重要手段,探明世界范围内材料信息学研究态势可为中国在该领域发展提供 参考。以2014—2020 年Web of Science 核心合集库收录的材料信息学领域文献为研究对象,借助CiteSpace 软件绘制知识图谱, 从论文数量、地域、合作和被引报告等角度,报告了材料信息学研究现状、前沿热点与演化趋势,进行了材料信息学国际研究态 势调查。


关键词:材料信息学;知识图谱;文献计量;研发态势



中图分类号:TP391         文献标识码:A         文章编号:2096-4706(2021)01-0121-04


Research Progress and Trend in Material Informatics Based on CiteSpace Visual Analysis

ZHAO Xiaohui

(Library of Xi’an University of Science and Technology,Xi’an 710054,China)

Abstract:Material informatics is an important means to realize the rapid research and development of new materials. Exploring the research trend of materials informatics in the world can provide reference for the development of China in this field. Taking the literatures in material informatics field included by Web of Science core collection library from 2014 to 2020 as research object,using the CiteSpace software to map knowledge graph,it reports the research status,front hotspot,evolutionary trends of material informatics from the angle of the number of papers,region,cooperation and cited reports,etc,and carries out the investigation of international research trend in materials informatics.

Keywords:material informatics;knowledge graph;bibliometrics;research and development trend


参考文献:

[1] 孙苏阳,王晓哲. 数据与理论共舞:计算材料学推动高效体系化新材料设计——计算材料学分论坛侧记 [J]. 中国材料进展,2020,39(11):824-825.

[2] ZHENG B,MAURIN G. Mechanical Control of the KineticPropylene/Propane Separation by Zeolitic Imidazolate Framework-8 [J].Angewandte Chemie International Edition,2019,58:13734–13738.

[3] RODGERS J R,CEBON D. Materials Informatics [J].MRSBulletin,2006,31(12):975-977.

[4] 牛程程,李少波,胡建军,等. 机器学习在材料信息学中的应用综述 [J]. 材料导报,2020,34(23):23100-23108.

[5] 陈悦,陈超美,刘则渊,等.CiteSpace 知识图谱的方法论功能 [J]. 科学学研究,2015,33(2):242-253.

[6] 胡志刚,陈超美,刘则渊,等. 从基于引文到基于引用——一种统计引文总被引次数的新方法 [J]. 图书情报工作,2013,57(21):5-10.

[7] JAIN A,ONG S P,HAUTIER G,et al. Commentary:The Materials Project:A materials genome approach to accelerating materials innovation [J].APL Materials,2013,1(1):[2020-11-05].https://aip.scitation.org/doi/10.1063/1.4812323.DOI:10.1063/1.4812323.

[8] FABER F,LINDMAA A H G,LILIENFELD A V,etal. Crystal structure representations for machine learning models offormation energies [J].International Journal of Quantum Chemistry,2015,115(16):1094-1101.


作者简介:赵晓慧(1985—),女,汉族,辽宁海城人,图书馆员,研究方向:图书情报学。