当前位置>主页 > 期刊在线 > 信息化应用 >

信息化应用22年20期

基于 Fluent 的管壳式换热器进气管组件 结构优化数值模拟
王争,董敏
(山东华宇工学院,山东 德州 253034)

摘  要:为分析换热器内部结构的优化调整对换热器性能的影响,基于 Fluent 对不同结构下管壳式换热器进气管组件的结构进行模拟,然后分别对产生的温度场、速度场等进行分析,研究不同换热器进气管组件的结构对换热器制热效果的影响。最终发现圆形阵列的个数影响着换热器的温度场与速度场,管道个数越多,换热器的换热能力越强,所以在换热器进气管组件结构的调整中,增加进气口端的管道个数会使换热器的换热效果得以优化。


关键词:Fluent;管壳式换热器;结构;温度场;速度场



DOI:10.19850/j.cnki.2096-4706.2022.20.027


课题项目:山东华宇工学院热泵节能技术协同创新中心项目


中图分类号:TP391.9                                       文献标识码:A                                文章编号:2096-4706(2022)20-0111-05


Numerical Simulation of Inlet Pipe Assembly Structure Optimization of Shell and Tube Heat Exchanger Based on Fluent

WANG Zheng, DONG Min

(Shandong Huayu University of Technology, Dezhou 253034, China)

Abstract: In order to analyze the influence of the optimization adjustment of the internal structure of the heat exchanger on the performance of the heat exchanger, the structure of the inlet pipe assembly of the shell and tube heat exchanger under different structures is simulated based on Fluent, and then the generated temperature field and velocity field are analyzed respectively to study the influence of the structure of the inlet pipe assembly of different heat exchangers on the heat generation effect of the heat exchanger. Finally, it is found that the number of circular arrays affects the temperature field and velocity field of the heat exchanger. The more pipes there are, the stronger the heat exchange capacity of the heat exchanger. Therefore, in the adjustment of the structure of the inlet pipe assembly of the heat exchanger, increasing the number of pipes at the inlet end will optimize the heat exchange effect of the heat exchanger.

Keywords: Fluent; shell and tube heat exchanger; structure; temperature field; velocity field


参考文献:

[1] 闫君芝,崔金健,党睿 . 管壳式换热器传热性能数值模拟[J]. 化工科技,2019,27(6):36-38+49.

[2] 史美中,王中铮 . 热交换热器原理与设计 [M]. 南京:东南大学出版社,2003.

[3] PATANKAR S V,SPALDING D B. A calculation procedure for the transient and steady state Behavior of shell-and-tube heat exchangers [EB/OL].[2022-07-05].https://www.zhangqiaokeyan.com/ ntis-science-report_other_thesis/02071966835.htm. 

[4] GENTRY C C. ROD baffle heat exchanger technology [EB/ OL].[2022-07-12].https://www.researchgate.net/publication/236536736_ RODbaffle_heat_exchanger_technology.

[5] 张之东 . 管壳式换热器内部三维流场数值模拟 [D]. 石家庄:河北科技大学,2012.

[6] 王定标,胡祥报,郭茶秀,等 . 大型纵流壳程换热器三维流动与传热数值模拟 [J]. 郑州大学学报(工学版),2002(3):13-18.

[7] 齐心 . 锥形燃气轮机燃烧器性能研究 [D]. 北京:华北电力大学,2017.

[8] 李卫军 . 羽毛球馆空调气流分布数值模拟及优化研究 [D].北京:北京建筑大学,2019.

[9] 白玉川,蒋昌波,罗纪生,等 . 振荡流底层拟序结构及其与泥沙相互作用研究 [J]. 力学进展,2003(3):347-356.

[10] 张小艳,张进,赵登育 .R417A 与 R22 流动沸腾换热性能的比较分析 [J]. 西安科技大学学报,2012,32(1):86-90.


作者简介:王争(1993.01—),男,汉族,河北廊坊人,助教,硕士,研究方向:能源应用。