摘 要:考虑单个Agent 资源有限,多个Agent 时常需形成联盟来完成任务或提高联盟整体能力,如何形成一组针对某个任务的最佳联盟是MAS 中一个紧迫而又关键性的问题。基于此,文中提出一种改进的IPSO 算法来解决该问题,同时为克服粒子过早收敛和局部优化,在改进的惯性权重上引入一种柯西变异的扰动算子,最后与PSO 算法及ACO 算法做对比,结果表明该IPSO 算法的全局搜索能力较强,成功避免了粒子过早收敛,资源浪费等问题。
关键词:多Agent 联盟;PSO 算法;ACO 算法;IPSO 算法
中图分类号:TP18 文献标识码:A 文章编号:2096-4706(2019)09-0005-03
Research on the Formation of Multiple Agents Alliance Based on IPSO Algorithm
CHEN Ningxia
(Jiangxi Vocational and Technical College of Information Application,Nanchang 330043,China)
Abstract:Considering the finiteness of the single Agent ability,multiple Agents often need to form a coalition to accomplish a task or improve the whole ability of coalition. The primary issue in the study of MAS is how to generate an optimal coalition oriented a set of tasks. Based on this background,this paper put forward an improved particle swarm optimization algorithm (IPSO)to solve the problem. In order to overcome the particle premature convergence and local optimization problems,a Cauchy mutation disturbance operator was introduced. Compared with PSO algorithm and the ACO algorithm,the global optimization of IPSO algorithm is better, which effectively avoided the premature convergence,the wasting resources problems and so on.
Keywords:multiple Agents system;PSO algorithm;ACO algorithm;IPSO algorithm
参考文献:
[1] 黄丽丽. 基于多Agent 的智能生存空间异构协作研究 [D].北京:北京交通大学,2014.
[2] 李天文. 面向多Agent 系统的博弈联盟形成与分配问题研究 [D]. 昆明:云南大学,2013.
[3] 吴庆洪,张颖,马宗民. 蚁群算法综述 [J]. 微计算机信息,2011,27(3):1-2+5.
[4] 蒋建国,夏娜,齐美彬,等. 一种基于蚁群算法的多任务联盟串行生成算法 [J]. 电子学报,2005(12):2178-2182.
[5] Kennedy J ,Eberhart R C . A discrete binary version of the particle swarm algorithm [C]// 1997 IEEE International Conference on Systems,Man,and Cybernetics. Computational Cybernetics and Simulation. IEEE,1997.
[6] 傅小利,顾红兵,陈国呈,等. 基于柯西变异粒子群算法的永磁同步电机参数辨识 [J]. 电工技术学报,2014,29(5):127-131.
作者简介:陈宁霞(1986-),女,汉族,河南周口人,专任教师, 助教,Web 前端在线课程开发者之一,硕士,研究方向:分布式人 工智能、软件开发等。