摘 要:研究了一类具有随机长连接的双层小世界振子网络的稳定性。首先给出双层小世界振子网络的结构和矩阵表示,然后分析了网络连接强度矩阵 C 的最大特征值 γ1 在数学期望意义下的取值,讨论了双层小世界振子网络在无时滞和有时滞两种情况下,系统平衡点稳定和不稳定时,矩阵 C 的最大特征值 γ1 需要满足的条件。最后,给出了双层小世界振子网络的稳定性和不稳定性区域。
关键词:双层网络;随机长连接;时滞;概率;稳定性
DOI:10.19850/j.cnki.2096-4706.2021.08.007
基金项目:吉林省教育厅“十三五”科学技 术项目(JJKH20180636KJ)
中图分类号:O157.5 文献标识码:A 文章编号:2096-4706(2021)08-0024-03
Study on the Stability of a Class of Double-layer Small World Oscillator Network
ZHOU Jing
(College of Information Technology,Jilin Agricultural University,Changchun 130118,China)
Abstract:In this paper,the stability of a class of double-layer small world oscillator network with random long connection is studied. Firstly,the structure and matrix representation of the double-layer small world oscillator network are given,and then the value of the maximum eigenvalue γ1 of the network connection strength matrix C in the sense of mathematical expectation is analyzed. The conditions of the maximum eigenvalue γ1 of matrix C need to be satisfied are discussed under the two conditions of the double-layer small world oscillator network without time delay and with time delay,and when the equilibrium point of the system is stable and unstable. Finally,the stability and instability regions of the double-layer small world oscillator network are given.
Keywords:double-layer network;random long connection;time delay;probability;stability
参考文献:
[1] 马金龙,杜长峰,隋伟,等 . 基于耦合强度的双层网络数 据传输能力 [J]. 物理学报,2020,69(18):370-381.
[2] 刘娜,方洁,邓玮,等 . 基于双层耦合网络的分数阶 SIR 传染病模型的稳定性分析 [J]. 数学的实践与认识,2020,50(20): 256-261.
[3] 孙晓璇,吴晔,冯鑫,等 . 高铁 - 普铁的实证双层网络 结构与鲁棒性分析 [J]. 电子科技大学学报,2019,48(2):315- 320.
[4] 张楠 . 双层星型复杂动力网络上的完全同步和稳定性 [D]. 呼和浩特:内蒙古大学,2019.
[5] 于东元 . 耦合复杂网络的稳定性和分岔问题研究 [D]. 吉 林:吉林大学,2018.
[6] 周晶 . 几类时滞复杂振子网络的动力学与控制 [D]. 吉林: 吉林大学,2017.
[7] CVETKOVIĆ D M,DOOB M,SACHS H,et al. Spectra of Graphs:Theory and Application [M].Berlin:VEB Deutscher Verlag der Wissenschaften,1980.
[8] ZHOU J,XU X,YU D,et al. Stability,Instability and Bifurcation Modes of a Delayed Small World Network with Excitatory or Inhibitory Short-Cuts [J/OL].International Journal of Bifurcation & Chaos in Applied Sciences and Engineering,2016,26(4): [2021-01-15].https://www.worldscientific.com/doi/abs/10.1142/ S0218127416300093.
[9] BERETTA E,KUANG Y. Geometric Stability Switch Criteria in Delay Differential Systems with Delay-dependent Parameters [J]. SIAM Journal on Mathematical Analysis,2015,33(5):1144-1165.
作者简介:周晶(1980—),女,汉族,吉林德惠人,讲师, 博士,研究方向:复杂网络的动力学与控制。