当前位置>主页 > 期刊在线 > 信息技术 >

信息技术21年12期

基于知识图谱的新疆旅游自动问答系统设计
孙晶 ¹'²,郭成艳 ¹,毛臣 ¹,胡玉叶 ¹
(1. 新疆大学 信息科学与工程学院,新疆 乌鲁木齐 830046;2. 新疆多语种信息技术重点实验室,新疆 乌鲁木齐 830046)

摘  要:近年来,新疆旅游业发展趋势越来越好,优美的风光,丰富的物产,受到国内外游客的喜爱。由于新疆地大物博,导致多数游客不能准确找到目的地。建立了一个新疆旅游知识图谱结构描述和形态分析的可计算方法体系,提出将自动问答系统运用于新疆旅游。创建新疆旅游知识图谱并构建基于新疆旅游知识图谱的自动问答平台,目的是使游客在存放着海量结构化知识的图谱上快速获取正确答案,为游客游览景区时减少不必要的时间消耗。


关键词:知识图谱;Neo4j 数据库;自动问答系统;新疆旅游



DOI:10.19850/j.cnki.2096-4706.2021.12.007


基金项目:国家自然科学基金地区基金项 目(61462084)


中图分类号:TP182                                            文献标识码:A                                       文章编号:2096-4706(2021)12-0026-04


Design of Xinjiang Tourism Automatic Question Answering System Based on Knowledge Graph

SUN Jing1,2, GUO Chengyan1 , MAO Chen1 , HU Yuye 1

(1.College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; 2.Xinjiang Key Laboratory of Multilingual Information Technology, Urumqi 830046, China)

Abstract: In recent years, the development trend of Xinjiang tourism is getting better and better. The beautiful scenery and rich products are loved by tourists at home and abroad. Due to the vast territory and abundant resources in Xinjiang, most tourists can't find their destination accurately. A computable method system for structural description and morphological analysis of Xinjiang tourism knowledge graph is established, and the application of automatic question answering system in Xinjiang tourism is proposed. The purpose of creating Xinjiang tourism knowledge graph and constructing an automatic question answering platform based on Xinjiang tourism knowledge graph is to enable tourists to quickly obtain correct answers on the graph with a large amount of structured knowledge, so as to reduce unnecessary time consumption of tourists when they visiting scenic spots.

Keywords: knowledge graph; Neo4j database; automatic question answering system; Xinjiang tourism


参考文献:

[1] 徐增林,盛泳潘,贺丽荣,等 . 知识图谱技术综述 [J]. 电 子科技大学学报,2016,45(4):589-606.

[2] 刘知远,孙茂松,林衍凯,等 . 知识表示学习研究进展 [J]. 计算机研究与发展,2016,53(2):247-261.

[3] 刘峤,李杨,段宏,等 . 知识图谱构建技术综述 [J]. 计算 机研究与发展,2016,53(3):582-600.

[4] ARTZI Y,LEE K,ZETTLEMOYER L. Broad-coverage CCG Semantic Parsing with AMR [C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon:Association for Computational Linguistics,2015:1-6.

[5] LI J H,ZHU M H,LU W,et al. Improving Semantic Parsing with Enriched Synchronous Context-Free Grammars in Statistical Machine Translation [J].ACM transactions on Asian language information processing,2017,16(1):6.1-6.24.


作者简介:孙晶(1978—),女,回族,新疆新源县人,讲师, 硕士,主要研究方向:机器学习、最优化算法、音频信息处理、自 然语言与信息处理;郭成艳(2002—),女,汉族,陕西延安人, 本科在读,主要研究方向:机器学习、最优化算法、音频信息处理、 自然语言与信息处理;毛臣(1999—),男,汉族,河南南阳人, 本科在读,主要研究方向:机器学习、最优化算法、音频信息处理、 自然语言与信息处理;胡玉叶(2001—),女,汉族,新疆哈密人, 本科在读,主要研究方向:机器学习、最优化算法、音频信息处理、 自然语言与信息处理。